TDEM Soundings as a Tool to Determine Seasonal Variations of Groundwater Salinity (Villafáfila Lakes, Spain)
Abstract
:1. Introduction
2. Study Area
2.1. Climate
2.2. Hydrogeology
3. Methodology
4. Results
4.1. Time Domain Electromagnetic Results
4.1.1. Winter Geoelectric Profile
4.1.2. Summer Geoelectric Profile
4.2. Hydrogeological Data
4.2.1. Piezometry
4.2.2. Electric Conductivity
Name | Category | Location | Date | EC (µS/cm) |
---|---|---|---|---|
Salina Grande | Lake | Lake | 27 July 2019 | 36,200 |
Salina Grande | Lake | Lake | 13 February 2020 | 7222 |
12-F-002 | Spring | Low lands | 27 July 2019 | 4550 |
12-F-002 | Spring | Low lands | 13 February 2020 | 3641 |
F-003 | Spring | Toe hills | 27 July 2019 | Dry |
F-003 | Spring | Toe hills | 13 February 2020 | 1719 |
30-P-006 | Dug well | Upper part hills | 27 July 2019 | 350 |
30-P-006 | Dug well | Upper part hills | 13 February 2020 | 537 |
5. Discussion
5.1. Aquifer System Characterization
5.2. Seasonal Changes in Groundwater
5.3. Implications for Groundwater Use
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohfahl, C.; Rodriguez, M.; Fenk, C.; Menz, C.; Benavente, J.; Hubberten, H.; Meyer, H.; Paul, L.; Knappe, A.; López-Geta, J.A.; et al. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data. J. Hydrol. 2008, 351, 170–187. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, I.; Hall, S.; Tweed, S.; Leblanc, M. Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia. Hydrogeol. J. 2009, 17, 1991. [Google Scholar] [CrossRef]
- Marazuela, M.A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile). J. Hydrol. 2018, 561, 223–235. [Google Scholar] [CrossRef]
- Sanz, D.; Valiente, N.; Dountcheva, I.; Muñoz-Martín, A.; Cassiraga, E.; Gómez-Alday, J. Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Pétrola Lake, SE Spain). Hydrogeol. J. 2022, 30, 975–988. [Google Scholar] [CrossRef]
- Rhoades, J.; Raats, P.; Prather, R. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 1976, 40, 651–655. [Google Scholar] [CrossRef]
- Danielsen, J.E.; Auken, E.; Jørgensen, F.; Søndergaard, V.; Sørensen, K.I. The application of the transient electromagnetic method in hydrogeophysical surveys. J. Appl. Geophys. 2003, 53, 181–198. [Google Scholar] [CrossRef]
- Jang, H.; Kim, H.J. Mapping deep-sea hydrothermal deposits with an in-loop transient electromagnetic method: Insights from 1D forward and inverse modeling. J. Appl. Geophys. 2015, 123, 170–176. [Google Scholar] [CrossRef]
- Metwaly, M.; Elawadi, E.; Moustafa, S.S.R.; Al Arifi, N.; El Alfy, M.; Al Zaharani, E. Groundwater contamination assessment in Al-Quwy’yia area of central Saudi Arabia using transient electromagnetic and 2D electrical resistivity tomography. Environ. Earth Sci. 2014, 71, 827–835. [Google Scholar] [CrossRef]
- Tabbagh, A.; Dabas, M. Absolute magnetic viscosity determination using time-domain electromagnetic devices. Archaeol. Prospect. 1996, 3, 199–208. [Google Scholar] [CrossRef]
- Goldman, M.; Gvirtzman, H.; Hurwitz, S. Mapping saline groundwater beneath the Sea Galilee and its vicinity using time domain electromagnetic (TDEM) geophysical technique. Isr. J. Earth Sci. 2004, 53, 187–197. [Google Scholar] [CrossRef]
- Tchouta, K.D.; Marie, B.; Emmanuel, M.V.Y.; Guillaume, F.; Benjamin, N.N.; Nicaise, Y.; Baba, G.I.; Anatoly, L. Contribution of time domain electromagnetic and magnetic resonance soundings to groundwater assessment at the margin of lake chad basin, cameroon. J. Appl. Geophys. 2019, 170, 103840. [Google Scholar] [CrossRef]
- Levi, E.; Goldman, M.; Hadad, A.; Gvirtzman, H. Spatial delineation of groundwater salinity using deep time domain electromagnetic geophysical measurements: A feasibility study. Water Resour. Res. 2008, 44, W12404. [Google Scholar] [CrossRef] [Green Version]
- Flores Avilés, G.P.; Descloitres, M.; Duwig, C.; Rossier, Y.; Spadini, L.; Legchenko, A.; Soruco, Á.; Argollo, J.; Pérez, M.; Medinaceli, W. Insight into the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical (TDEM), hydrogeological and geochemical data. J. S. Am. Earth. Sci. 2020, 99, 102479. [Google Scholar] [CrossRef]
- Yihdego, Y.; Webb, J. Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia. J. Environ. Manag. 2012, 112, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C. Daily activity patterns of Great Bustards Otis tarda. Ardeola 2000, 47, 57–68. [Google Scholar]
- Nilsson, L.; Kampe-Persson, H. Changes in migration and wintering patterns of greylag geese Anser anser from southernmost Sweden during three decades. Ornis Svec. 2018, 28, 19–38. [Google Scholar] [CrossRef]
- IGM. Investigación Hidrogeológica de la Cuenca del Duero: Sistemas nº 8 y 12; IGME: Madrid, Spain, 1980; p. 75. [Google Scholar]
- IGME-DGA. Apoyo a la Caracterización Adicional de las Masas de Agua Subterránea en Riesgo de no Cumplir los Objetivos Medioambientales en 2015. Demarcación Hidrográfica del Duero. Masa de agua Subterránea 31 Villafáfila; IGME: Madrid, Spain, 2009; p. 84. [Google Scholar]
- AEMET. AEMET Open Data. Benavente. Available online: http://www.aemet.es/es/datos_abiertos/AEMET_OpenData (accessed on 1 July 2020).
- Huerta, P.; Armenteros, I.; Recio, C.; Carrasco-García, P.; Rueda-Gualdrón, C.; Cidón-Trigo, A. The origin of the saline waters in the Villafáfila lakes (NW Spain). A hydrogeological, hydrochemical, and geophysical approach. Sci. Total Environ. 2021, 789, 147909. [Google Scholar] [CrossRef]
- Armenteros, I.; Huerta, P.; Cidón-Trigo, A.; Rueda-Gualdrón, M.C.; Recio, C.; Martínez-Grana, A. Hydrogeology of the lagunas de villafáfila area (Zamora). Geogaceta 2019, 66, 51–54. [Google Scholar]
- Fernández Pérez, L.; Cabrera Lagunilla, M.P. Estudio Hidrogeológico de las lagunas de Villafáfila (Zamora). In Geología Ambiental y Ordenación del Territorio. III Reunión Nacional; Universitat de Valencia: Valencia, Spain, 1987; Volume 1, pp. 441–459. [Google Scholar]
- Fitterman, D.V.; Stewart, M.T. Transient electromagnetic sounding for groundwater. Geophysics 1986, 51, 995–1005. [Google Scholar] [CrossRef]
- Spies, B.R. Depth of investigation in electromagnetic sounding methods. Geophysics 1989, 54, 872–888. [Google Scholar] [CrossRef]
- Nabighian, M.N. Electromagnetic Methods in Applied Geophysics: Volume 1, Theory; Society of Exploration Geophysicists: Houston, TX, USA, 1988. [Google Scholar]
- Nieto, I.M.; Carrasco García, P.; Sáez Blázquez, C.; Farfán Martín, A.; González-Aguilera, D.; Carrasco García, J. Geophysical Prospecting for Geothermal Resources in the South of the Duero Basin (Spain). Energies 2020, 13, 5397. [Google Scholar] [CrossRef]
- Hoekstra, P.; Blohm, M.W. Case histories of time-domain electromagnetic soundings in environmental geophysics. In Geotechnical an Environmental Geophysics: Volume II: Environmental and Groundwater; Society of Exploration Geophysicists: Houston, TX, USA, 1990; pp. 1–16. [Google Scholar]
- Constable, S.C.; Parker, R.L.; Constable, C.G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- Martín Serrano, A.; Piles Mateo, E. Villafáfila (308). In Mapa Geológico de España y Memoria, Escala 1:15.000; IGME: Madrid, Spain, 1982. [Google Scholar]
- Martín Serrano, A.; Barba Martín, A. Manganeses de la Lampreana 340. In Mapa Geológico de España y Memoria. Escala 1:50.000; IGME: Madrid, Spain, 1979. [Google Scholar]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Yadav, D.; Sarin, M.; Krishnaswami, S. Hydrogeochemistry of Sambhar Salt Lake, Rajasthan: Implication to recycling of salt and annual salt budget. J.-Geol. Soc. India 2007, 69, 139–152. [Google Scholar]
- Drever, J.I.; Smith, C.L. Cyclic wetting and drying of the soil zone as an influence on the chemistry of ground water in arid terrains. Am. J. Sci. 1978, 278, 1448–1454. [Google Scholar] [CrossRef]
- Descloitres, M.; Chalikakis, K.; Legchenko, A.; Moussa, A.M.; Genthon, P.; Favreau, G.; Le Coz, M.; Boucher, M.; Oï, M. Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad Basin, Niger) using MRS and TDEM methods. J. Afr. Earth Sci. 2013, 87, 71–85. [Google Scholar] [CrossRef]
- Amato, F.; Pace, F.; Vergnano, A.; Comina, C. TDEM prospections for inland groundwater exploration in semiarid climate, Island of Fogo, Cape Verde. J. Appl. Geophys. 2021, 184, 104242. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.J.; Monteiro-Santos, F.A.; Madeira, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F. Water prospection in volcanic islands by Time Domain Electromagnetic (TDEM) surveying: The case study of the islands of Fogo and Santo Antão in Cape Verde. J. Appl. Geophys. 2016, 134, 226–234. [Google Scholar] [CrossRef]
EC (µS/cm) | Site | Sw-n | φ (Porosity) | a | m | ρf (Ohm/m) |
---|---|---|---|---|---|---|
537 | 30-P-006 | 1 | 0.35 | 1.2 | 1.3 | 87.5 |
1719 | F-003 | 1 | 0.35 | 1.2 | 1.3 | 27.3 |
3641 | 12-F-002 | 1 | 0.35 | 1.2 | 1.3 | 12.9 |
7222 | Salina Grande | 1 | 0.35 | 1.2 | 1.3 | 6.5 |
36,200 | Salina Grande | 1 | 0.2 | 1.2 | 1.3 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta, P.; Carrasco-García, P.; Armenteros, I.; Recio, C.; Carrasco-García, J.; Rodríguez-Jiménez, E. TDEM Soundings as a Tool to Determine Seasonal Variations of Groundwater Salinity (Villafáfila Lakes, Spain). Water 2022, 14, 2402. https://doi.org/10.3390/w14152402
Huerta P, Carrasco-García P, Armenteros I, Recio C, Carrasco-García J, Rodríguez-Jiménez E. TDEM Soundings as a Tool to Determine Seasonal Variations of Groundwater Salinity (Villafáfila Lakes, Spain). Water. 2022; 14(15):2402. https://doi.org/10.3390/w14152402
Chicago/Turabian StyleHuerta, Pedro, Pedro Carrasco-García, Ildefonso Armenteros, Clemente Recio, Javier Carrasco-García, and Esther Rodríguez-Jiménez. 2022. "TDEM Soundings as a Tool to Determine Seasonal Variations of Groundwater Salinity (Villafáfila Lakes, Spain)" Water 14, no. 15: 2402. https://doi.org/10.3390/w14152402
APA StyleHuerta, P., Carrasco-García, P., Armenteros, I., Recio, C., Carrasco-García, J., & Rodríguez-Jiménez, E. (2022). TDEM Soundings as a Tool to Determine Seasonal Variations of Groundwater Salinity (Villafáfila Lakes, Spain). Water, 14(15), 2402. https://doi.org/10.3390/w14152402