Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Wastewater Treatment System Description and Sample Collection
2.3. Analysis of Conventional Water Quality Parameters
2.4. Pharmaceutical Analysis Procedure
2.5. Environmental Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influent Concentrations and Removals of Conventional Parameters
3.2. Evaluation of Pharmaceutical Occurrence and Removal without Effluent Recirculation
3.3. Effect of the Effluent Recirculation on Pharmaceutical Removal
3.4. Environmental Risk Associated with Pharmaceutical Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molinos-Senante, M.; Gómez, T.; Caballero, R.; Hernández-Sancho, F.; Sala-Garrido, R. Assessment of Wastewater Treatment Alternatives for Small Communities: An Analytic Network Process Approach. Sci. Total Environ. 2015, 532, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Melián, J.A.; González-Díaz, Ó.; Araña-Mesa, J.; Martel, G.; Doña-Rodríguez, J.M.; Pérez-Peña, J. Constructed Wetland for Improving the Performance of a Facultative Pond Treating High Strength Urban Wastewater. In Wetlands: Ecology, Management and Conservation; Baranyai, A., Benkô, D., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 203–218. [Google Scholar]
- Klein, E.Y.; Milkowska-Shibata, M.; Tseng, K.K.; Sharland, M.; Gandra, S.; Pulcini, C.; Laxminarayan, R. Assessment of WHO Antibiotic Consumption and Access Targets in 76 Countries, 2000–15: An Analysis of Pharmaceutical Sales Data. Lancet Infect. Dis. 2021, 21, 107–115. [Google Scholar] [CrossRef]
- Hider-Mlynarz, K.; Cavalié, P.; Maison, P. Trends in Analgesic Consumption in France over the Last 10 Years and Comparison of Patterns across Europe. Br. J. Clin. Pharmacol. 2018, 84, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Liu, T.; Gu, Z.; Li, Q.; Luo, C. Consumption Trend and Prescription Pattern of Opioid Analgesics in China from 2006 to 2015. Eur. J. Hosp. Pharm. 2019, 26, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Loos, R.; Marinov, D.; Sanseverino, I.; Napierska, D.; Lettieri, T. Review of the 1st Watch List under the Water Framework Directive and Recommendations for the 2nd Watch List; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Gomez Cortes, L.; MArinov, D.; Sanseverino, I.; Navarro Cuenca, A.; Niegowska, M.; Porcel Rodríguez, E.; Lettieri, T. Selection of Substances for the 3rd Watch List under the Water Framework Directive; Office of the European Union: Luxembourg, 2020.
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Herrera-Melián, J.A.; Rodríguez-Rodríguez, R.; Ojeda-González, Z.; Landívar-Andrade, V.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Pharmaceutical and Personal Care Product Residues in a Macrophyte Pond-Constructed Wetland Treating Wastewater from a University Campus: Presence, Removal and Ecological Risk Assessment. Sci. Total Environ. 2020, 703, 135596. [Google Scholar] [CrossRef]
- Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and Removal of Pharmaceuticals in Four Full-Scale Constructed Wetlands in the Czech Republic–the First Year of Monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
- Rühmland, S.; Wick, A.; Ternes, T.A.; Barjenbruch, M. Fate of Pharmaceuticals in a Subsurface Flow Constructed Wetland and Two Ponds. Ecol. Eng. 2015, 80, 125–139. [Google Scholar] [CrossRef]
- He, Y.; Sutton, N.B.; Lei, Y.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Fate and Distribution of Pharmaceutically Active Compounds in Mesocosm Constructed Wetlands. J. Hazard. Mater. 2018, 357, 198–206. [Google Scholar] [CrossRef]
- Lee, E.; Shon, H.K.; Cho, J. Role of Wetland Organic Matters as Photosensitizer for Degradation of Micropollutants and Metabolites. J. Hazard. Mater. 2014, 276, 1–9. [Google Scholar] [CrossRef]
- Park, J.; Cho, K.H.; Lee, E.; Lee, S.; Cho, J. Sorption of Pharmaceuticals to Soil Organic Matter in a Constructed Wetland by Electrostatic Interaction. Sci. Total Environ. 2018, 635, 1345–1350. [Google Scholar] [CrossRef]
- Escolà Casas, M.; Matamoros, V. Novel Constructed Wetland Configurations for the Removal of Pharmaceuticals in Wastewater; Springer: Berlin/Heidelberg, Germany, 2020; pp. 163–190. [Google Scholar]
- Ilyas, H.; van Hullebusch, E.D. Performance Comparison of Different Types of Constructed Wetlands for the Removal of Pharmaceuticals and Their Transformation Products: A Review. Environ. Sci. Pollut. Res. 2020, 27, 14342–14364. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Zambello, E. How Efficient Are Constructed Wetlands in Removing Pharmaceuticals from Untreated and Treated Urban Wastewaters? A Review. Sci. Total Environ. 2014, 470–471, 1281–1306. [Google Scholar] [CrossRef] [PubMed]
- Zapater-Pereyra, M.; Ilyas, H.; Lavrnić, S.; van Bruggen, J.J.A.; Lens, P.N.L. Evaluation of the Performance and Space Requirement by Three Different Hybrid Constructed Wetlands in a Stack Arrangement. Ecol. Eng. 2015, 82, 290–300. [Google Scholar] [CrossRef]
- Ilyas, H.; Masih, I. The Performance of the Intensified Constructed Wetlands for Organic Matter and Nitrogen Removal: A Review. J. Environ. Manag. 2017, 198, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Auvinen, H.; Gebhardt, W.; Linnemann, V.; Du Laing, G.; Rousseau, D.P.L. Laboratory- and Full-Scale Studies on the Removal of Pharmaceuticals in an Aerated Constructed Wetland: Effects of Aeration and Hydraulic Retention Time on the Removal Efficiency and Assessment of the Aquatic Risk. Water Sci. Technol. 2017, 76, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Nivala, J.; Kahl, S.; Boog, J.; van Afferden, M.; Reemtsma, T.; Müller, R.A. Dynamics of Emerging Organic Contaminant Removal in Conventional and Intensified Subsurface Flow Treatment Wetlands. Sci. Total Environ. 2019, 649, 1144–1156. [Google Scholar] [CrossRef]
- Ávila, C.; Pelissari, C.; Sezerino, P.H.; Sgroi, M.; Roccaro, P.; García, J. Enhancement of Total Nitrogen Removal through Effluent Recirculation and Fate of PPCPs in a Hybrid Constructed Wetland System Treating Urban Wastewater. Sci. Total Environ. 2017, 584–585, 414–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sklarz, M.Y.; Gross, A.; Yakirevich, A.; Soares, M.I.M. A Recirculating Vertical Flow Constructed Wetland for the Treatment of Domestic Wastewater. Desalination 2009, 246, 617–624. [Google Scholar] [CrossRef]
- Torrijos, V.; Gonzalo, O.G.; Trueba-Santiso, A.; Ruiz, I.; Soto, M. Effect of By-Pass and Effluent Recirculation on Nitrogen Removal in Hybrid Constructed Wetlands for Domestic and Industrial Wastewater Treatment. Water Res. 2016, 103, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Suárez, S.; Reif, R.; Lema, J.M.; Omil, F. Mass Balance of Pharmaceutical and Personal Care Products in a Pilot-Scale Single-Sludge System: Influence of T, SRT and Recirculation Ratio. Chemosphere 2012, 89, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Dutta, K.; Lee, M.Y.; Lai, W.W.P.; Lee, C.H.; Lin, A.Y.C.; Lin, C.F.; Lin, J.G. Removal of Pharmaceuticals and Organic Matter from Municipal Wastewater Using Two-Stage Anaerobic Fluidized Membrane Bioreactor. Bioresour. Technol. 2014, 165, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Occurrence and Environmental Impact of Pharmaceutical Residues from Conventional and Natural Wastewater Treatment Plants in Gran Canaria (Spain). Sci. Total Environ. 2017, 599–600, 934–943. [Google Scholar] [CrossRef]
- Ávila, C.; García-Galán, M.J.; Uggetti, E.; Montemurro, N.; García-Vara, M.; Pérez, S.; García, J.; Postigo, C. Boosting Pharmaceutical Removal through Aeration in Constructed Wetlands. J. Hazard. Mater. 2021, 412, 125231. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of Constructed Wetlands in Performance Intensifications for Wastewater Treatment: A Nitrogen and Organic Matter Targeted Review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. A Survey of the Presence of Pharmaceutical Residues in Wastewaters. Evaluation of Their Removal Using Conventional and Natural Treatment Procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGettigan, P.; Henry, D. Cardiovascular Risk with Non-Steroidal Anti-Inflammatory Drugs: Systematic Review of Population-Based Controlled Observational Studies. PLoS Med. 2011, 8, e1001098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekpeghere, K.I.; Sim, W.J.; Lee, H.J.; Oh, J.E. Occurrence and Distribution of Carbamazepine, Nicotine, Estrogenic Compounds, and Their Transformation Products in Wastewater from Various Treatment Plants and the Aquatic Environment. Sci. Total Environ. 2018, 640–641, 1015–1023. [Google Scholar] [CrossRef]
- Verster, J.C.; Koenig, J. Caffeine Intake and Its Sources: A Review of National Representative Studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1250–1259. [Google Scholar] [CrossRef]
- Senta, I.; Gracia-Lor, E.; Borsotti, A.; Zuccato, E.; Castiglioni, S. Wastewater Analysis to Monitor Use of Caffeine and Nicotine and Evaluation of Their Metabolites as Biomarkers for Population Size Assessment. Water Res. 2015, 74, 23–33. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Martín-Villacorta, J.; Bécares, E.; Bayona, J.M. Assessment of Full-Scale Natural Systems for the Removal of PPCPs from Wastewater in Small Communities. Water Res. 2010, 44, 1429–1439. [Google Scholar] [CrossRef]
- Xu, Y.; Radjenovic, J.; Yuan, Z.; Ni, B.J. Biodegradation of Atenolol by an Enriched Nitrifying Sludge: Products and Pathways. Chem. Eng. J. 2017, 312, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Casierra-Martinez, H.A.; Madera-Parra, C.A.; Vargas-Ramírez, X.M.; Caselles-Osorio, A.; Torres-López, W.A. Diclofenac and Carbamazepine Removal from Domestic Wastewater Using a Constructed Wetland-Solar Photo-Fenton Coupled System. Ecol. Eng. 2020, 153, 105699. [Google Scholar] [CrossRef]
- de Oliveira, M.; Frihling, B.E.F.; Velasques, J.; Filho, F.J.C.M.; Cavalheri, P.S.; Migliolo, L. Pharmaceuticals Residues and Xenobiotics Contaminants: Occurrence, Analytical Techniques and Sustainable Alternatives for Wastewater Treatment. Sci. Total Environ. 2020, 705, 135568. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, S.Ç.; Aktaş, Ö.; Findik, N.; Akça, L.; Kinaci, C. Effect of Recirculation on Nitrogen Removal in a Hybrid Constructed Wetland System. Ecol. Eng. 2012, 40, 1–5. [Google Scholar] [CrossRef]
- Lavrova, S.; Koumanova, B. Influence of Recirculation in a Lab-Scale Vertical Flow Constructed Wetland on the Treatment Efficiency of Landfill Leachate. Bioresour. Technol. 2010, 101, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Nava, O.; Ramírez-Saad, H.; Loera, O.; González, I. Evaluation of the Simultaneous Removal of Recalcitrant Drugs (Bezafibrate, Gemfibrozil, Indomethacin and Sulfamethoxazole) and Biodegradable Organic Matter from Synthetic Wastewater by Electro-Oxidation Coupled with a Biological System. Environ. Technol. 2016, 37, 2964–2974. [Google Scholar] [CrossRef] [PubMed]
- Escolà Casas, M.; Bester, K. Can Those Organic Micro-Pollutants That Are Recalcitrant in Activated Sludge Treatment Be Removed from Wastewater by Biofilm Reactors (Slow Sand Filters)? Sci. Total Environ. 2015, 506–507, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prost-Boucle, S.; Molle, P. Recirculation on a Single Stage of Vertical Flow Constructed Wetland: Treatment Limits and Operation Modes. Ecol. Eng. 2012, 43, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Fu, T.; Wang, H.; Chen, R.; Wang, B.; He, T.; Pi, Y.; Zhou, J.; Liang, T.; Chen, M. Removal of Organic Pollutants by Effluent Recirculation Constructed Wetlands System Treating Landfill Leachate. Environ. Technol. Innov. 2021, 24, 101843. [Google Scholar] [CrossRef]
- Lin, C.J.; Chyan, J.M.; Zhuang, W.X.; Vega, F.A.; Mendoza, R.M.O.; Senoro, D.B.; Shiu, R.F.; Liao, C.H.; Huang, D.J. Application of an Innovative Front Aeration and Internal Recirculation Strategy to Improve the Removal of Pollutants in Subsurface Flow Constructed Wetlands. J. Environ. Manag. 2020, 256, 109873. [Google Scholar] [CrossRef] [PubMed]
- Oropesa, A.L.; Floro, A.M.; Palma, P. Toxic Potential of the Emerging Contaminant Nicotine to the Aquatic Ecosystem. Environ. Sci. Pollut. Res. 2017, 24, 16605–16616. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, H.; Masih, I.; van Hullebusch, E.D. Pharmaceuticals’ Removal by Constructed Wetlands: A Critical Evaluation and Meta-Analysis on Performance, Risk Reduction, and Role of Physicochemical Properties on Removal Mechanisms. J. Water Health 2020, 18, 253–291. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Nakamura, Y.; Nakamura, Y.; Kitani, C.; Imari, T.; Sekizawa, J.; Takao, Y.; Yamashita, N.; Hirai, N.; Oda, S.; et al. Initial ecological risk assessment of eight selected human pharmaceuticals in Japan. Environ. Sci. Int. Environ. Physiol. Toxicol. 2007, 14, 177–193. [Google Scholar]
- Ginebreda, A.; Muñoz, I.; de Alda, M.L.; Brix, R.; López-Doval, J.; Barceló, D. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef]
- MacGillivray, A.R. Contaminants of emerging concern in the Tidal Delaware River. Pilot Monitoring Survey 2007–2009. Del. River Basin Comm. 2013. [Google Scholar]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466, 421–438. [Google Scholar] [CrossRef]
DAPHNIDS | ||||||
---|---|---|---|---|---|---|
No Effluent Recirculation | 50% Effluent Recirculation | |||||
Influent | Pond Effluent | CW Effluent | Influent | Pond Effluent | CW Effluent | |
Nicotine | 65.43 | 13.46 | 3.13 | 43.51 | 4.96 | 3.17 |
Atenolol | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Trimethoprim | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Paraxanthine | 0.14 | 0.01 | 0.01 | 0.33 | 0.02 | 0.00 |
Caffeine | 6.28 | 0.27 | 0.11 | 3.98 | 0.05 | 0.00 |
Erythromycin | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Carbamazepine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Naproxen | 0.44 | 0.09 | 0.10 | 0.41 | 0.10 | 0.06 |
Ibuprofen | 3.01 | 1.24 | 0.69 | 0.68 | 0.55 | 0.69 |
Diclofenac | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Gemfibrozil | 0.03 | 0.01 | 0.03 | 0.01 | 0.02 | 0.01 |
TOTAL | 75.32 | 15.09 | 4.08 | 48.92 | 5.70 | 3.94 |
ALGAE | ||||||
No Effluent Recirculation | 50% Effluent Recirculation | |||||
Influent | Pond Effluent | CW Effluent | Influent | Pond Effluent | CW Effluent | |
Nicotine | 6.54 | 1.35 | 0.31 | 4.35 | 0.50 | 0.32 |
Atenolol | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Trimethoprim | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
Paraxanthine | 0.25 | 0.02 | 0.01 | 0.58 | 0.04 | 0.00 |
Caffeine | 6.28 | 0.27 | 0.11 | 3.98 | 0.05 | 0.00 |
Erythromycin | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Carbamazepine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Naproxen | 0.30 | 0.06 | 0.07 | 0.28 | 0.07 | 0.04 |
Ibuprofen | 6.79 | 2.80 | 1.56 | 1.53 | 1.23 | 1.57 |
Diclofenac | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 |
Gemfibrozil | 0.07 | 0.03 | 0.07 | 0.02 | 0.04 | 0.02 |
TOTAL | 20.23 | 4.54 | 2.14 | 10.77 | 1.93 | 1.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes-Alonso, R.; Herrera-Melián, J.A.; Sánchez-Suárez, F.; Díaz-Mendoza, V.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation. Water 2022, 14, 2340. https://doi.org/10.3390/w14152340
Guedes-Alonso R, Herrera-Melián JA, Sánchez-Suárez F, Díaz-Mendoza V, Sosa-Ferrera Z, Santana-Rodríguez JJ. Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation. Water. 2022; 14(15):2340. https://doi.org/10.3390/w14152340
Chicago/Turabian StyleGuedes-Alonso, Rayco, José A. Herrera-Melián, Francisca Sánchez-Suárez, Verónica Díaz-Mendoza, Zoraida Sosa-Ferrera, and José J. Santana-Rodríguez. 2022. "Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation" Water 14, no. 15: 2340. https://doi.org/10.3390/w14152340
APA StyleGuedes-Alonso, R., Herrera-Melián, J. A., Sánchez-Suárez, F., Díaz-Mendoza, V., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2022). Removal of Pharmaceuticals in a Macrophyte Pond-Constructed Wetland System and the Effect of a Low Effluent Recirculation. Water, 14(15), 2340. https://doi.org/10.3390/w14152340