Assessment of the Potential of Coordinating Two Interacting Monitoring Networks within the Lerma-Santiago Hydrologic System in Mexico
Abstract
:1. Introduction
1.1. Water Quality Monitoring in Developing Countries
1.2. The Lerma-Santiago Hydrological System as a Case Study
1.3. Objective
2. Materials and Methods
2.1. Study Area
2.2. The Water Quality Monitoring Networks and the Water Quality Data
2.3. Data Pre-Processing
2.4. Assessment of the Monitoring Networks through Multivariate Statistical Analyses
2.4.1. Principal Component and Correlation Analyses to Assess the Rationalization Potential of the Water Quality Parameters
2.4.2. Cluster and Discriminant Analyses to Assess the Rationalization Potential of the Monitoring Sites
3. Results and Discussion
3.1. Rationalization of the Water Quality Parameters Currently Measured by Both Authorities
3.2. Rationalization of the Monitoring Sites for a Possible Joint WQMN
3.3. Main Deficiencies of the WQMNs within the Context of the LSHS and Potentialities for Developing Countries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trevathan, J.; Atkinson, I.; Read, W.; Johnstone, R.; Bajema, N.; McGeachin, J. Establishing Low Cost Aquatic Monitoring Networks for Developing Countries. In Communications: Wireless in Developing Countries and Networks of the Future; Pont, A., Pujolle, G., Raghavan, S.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 39–50. [Google Scholar] [CrossRef] [Green Version]
- Khalil, B.; Ouarda, T.B.M.J. Statistical approaches used to assess and redesign surface water-quality-monitoring networks. J. Environ. Monit. 2009, 11, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, R.G.B.; Lamparelli, M.C.; Dodds, W.K.; Cunha, D.G.F. Spatial optimization of the water quality monitoring network in São Paulo State (Brazil) to improve sampling efficiency and reduce bias in a developing sub-tropical region. Environ. Sci. Pollut. Res. 2022, 29, 11374–11392. [Google Scholar] [CrossRef] [PubMed]
- Calazans, G.M.; Pinto, C.C.; da Costa, E.P.; Perini, A.F.; Oliveira, S.C. The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil. Environ. Monit. Assess. 2018, 190, 491. [Google Scholar] [CrossRef]
- Casillas-García, L.F.; de Anda, J.; Yebra-Montes, C.; Shear, H.; Díaz-Vázquez, D.; Gradilla-Hernández, M.S. Development of a specific water quality index for the protection of aquatic life of a highly polluted urban river. Ecol. Indic. 2021, 129, 107899. [Google Scholar] [CrossRef]
- CONAGUA. Calidad del agua en México 2021. Available online: http://www.gob.mx/conagua/articulos/calidad-del-agua (accessed on 2 February 2022).
- CEA. Sistema de Calidad Del Agua-CEA Jalisco 2022. Available online: http://info.ceajalisco.gob.mx/sca/ (accessed on 1 February 2022).
- Rizo-Decelis, L.D.; Andreo, B. Water Quality Assessment of the Santiago River and Attenuation Capacity of Pollutants Downstream Guadalajara City, Mexico. River Res. Appl. 2016, 32, 1505–1516. [Google Scholar] [CrossRef]
- Rizo-Decelis, L.D.; Pardo-Igúzquiza, E.; Andreo, B. Spatial Prediction of Water Quality Variables along a Main River Channel, in Presence of Pollution Hotspots. Sci. Total Environ. 2017, 605–606, 276–290. [Google Scholar] [CrossRef]
- Calazans, G.M.; Pinto, C.C.; da Costa, E.P.; Perini, A.F.; Oliveira, S.C. Using Multivariate Techniques as a Strategy to Guide Optimization Projects for the Surface Water Quality Network Monitoring in the Velhas River Basin, Brazil. Environ. Monit. Assess. 2018, 190, 726. [Google Scholar] [CrossRef]
- Mavukkandy, M.O.; Karmakar, S.; Harikumar, P.S. Assessment and Rationalization of Water Quality Monitoring Network: A Multivariate Statistical Approach to the Kabbini River (India). Environ. Sci. Pollut. Res. 2014, 21, 10045–10066. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.A.; Soto, L.; Diaz, A. A Proposal for Redesigning the Water Quality Network of the Tunjuelo River in Bogotá, Colombia through a Spatio-Temporal Analysis. Resources 2019, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Mahjouri, N.; Kerachian, R. Revising River Water Quality Monitoring Networks Using Discrete Entropy Theory: The Jajrood River Experience. Environ. Monit. Assess. 2011, 175, 291–302. [Google Scholar] [CrossRef]
- Aparicio, J. Hydrology of the Lerma-Chapala Watershed. In The Lerma-Chapala Watershed; Springer: Boston, MA, USA, 2001; pp. 3–30. [Google Scholar] [CrossRef]
- CONAGUA. Programa de medidas preventivas y de mitigación de la sequía en la cuenca Lerma-Chapala. 2015. Available online: https://www.gob.mx/conagua/acciones-y-programas/programas-de-medidas-preventivas-y-de-mitigacion-a-la-sequia-pmpms-por-consejo-de-cuenca (accessed on 1 February 2022).
- McCulligh, C.; Arellano-García, L.; Casas-Beltrán, D. Unsafe waters: The hydrosocial cycle of drinking water in Western Mexico. Local Environ. 2020, 25, 576–596. [Google Scholar] [CrossRef]
- CONABIO. Mapa Nacional de Referencia, Cobertura de Suelo, 1:20000. INEGI, CONAFOR. 2018. Available online: https://monitoreo.conabio.gob.mx/snmb_charts/descarga_datos_madmex.html (accessed on 1 February 2022).
- Gebhardt, S.; Maeda, P.; Wehrmann, T.; Argumedo Espinoza, J.; Schmidt, M. A proper Land Cover and Forest Type Classification Scheme for Mexico. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2015; pp. 383–390. [Google Scholar] [CrossRef] [Green Version]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of a water quality index for rivers in West Java Province, Indonesia. Ecol. Indic. 2018, 85, 966–982. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Pollution Control Federation (Eds.) Standard Methods: For the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation (Eds.) Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- EMA. ¿Qué Es Ema? 2022. Available online: https://www.ema.org.mx/portal_v3/index.php/que-es-ema (accessed on 2 February 2022).
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 3rd ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Gradilla-Hernández, M.S.; de Anda, J.; Garcia-Gonzalez, A.; Meza-Rodríguez, D.; Yebra Montes, C.; Perfecto-Avalos, Y. Multivariate water quality analysis of Lake Cajititlán, Mexico. Environ. Monit. Assess. 2019, 19, 5. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Statistics for Biology and Health; Springer: New York, NY, USA, 2007; ISBN 978-0-387-45972-1. [Google Scholar]
- Chapman, D.V.; Bradley, C.; Gettel, G.M.; Hatvani, I.G.; Hein, T.; Kovács, J.; Liska, I.; Oliver, D.M.; Tanos, P.; Trásy, B.; et al. Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy 2016, 64, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer: New York, USA, 2021. [Google Scholar]
- Khalil, B.; Ouarda, T.B.M.J.; St-Hilaire, A.; Chebana, F. A Statistical Approach for the Rationalization of Water Quality Indicators in Surface Water Quality Monitoring Networks. J. Hydrol. 2010, 386, 173–185. [Google Scholar] [CrossRef]
- Varekar, V.; Yadav, V.; Karmakar, S. Rationalization of water quality monitoring locations under spatiotemporal heterogeneity of diffuse pollution using seasonal export coefficient. J. Environ. Manag. 2021, 277, 111342. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Harmancioglu, N.B.; Ozkul, S.D.; Alpaslan, M.N. Water Quality Monitoring and Network Design; Springer: Dordrecht, The Netherlands, 1998; pp. 61–106. [Google Scholar] [CrossRef]
- Fiquepron, J.; Garcia, S.; Stenger, A. Land use impact on water quality: Valuing forest services in terms of the water supply sector. J. Environ. Manag. 2013, 126, 113–121. [Google Scholar] [CrossRef]
- Kreye, M.M.; Adams, D.C.; Escobedo, F.J. The Value of Forest Conservation for Water Quality Protection. Forests 2014, 5, 862–884. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.; Ellis, J.B. Water Quality Problems of Urban Areas. GeoJournal 1985, 11, 265–275. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Diaz-Vázquez, D.; Cummings, S.C.A.; Rodríguez, D.M.; Guerrero, C.S.; de Anda, J.; Gradilla-Hernández, M.S. Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México. Sustainability 2020, 12, 3527. [Google Scholar] [CrossRef]
- Draghici, C.; Jelescu, C.; Dima, C.; Coman, G.; Chirila, E. Heavy Metals Determination in Environmental and Biological Samples. In Environmental Heavy Metal Pollution and Effects on Child Mental Development; Simeonov, L.I., Kochubovski, M.V., Simeonova, B.G., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 145–158. [Google Scholar]
- Moor, C.; Lymberopoulou, T.; Dietrich, V.J. Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS. Mikrochim. Acta 2001, 136, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Tang, S.; Han, D.; Fu, G.; Solomatine, D.; Zheng, Y. A Comprehensive Review on the Design and Optimization of Surface Water Quality Monitoring Networks. Environ. Model. Softw. 2020, 132, 104792. [Google Scholar] [CrossRef]
- EC. European Parlament. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Office for Official Publications of the European Communities: Luxembourg, 2000. Available online: https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (accessed on 2 February 2022).
- Dulio, V.; van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging Pollutants in the EU: 10 Years of NORMAN in Support of Environmental Policies and Regulations. Environ. Sci. Eur. 2018, 30, 5. [Google Scholar] [CrossRef]
- Faby, J.-A.; Neveu, G.; Jacquin, N. Towards a European-Wide Exchange Network for Improving Dissemination of Integrated Water Resources Management Research Outcomes. Environ. Sci. Policy 2005, 8, 307–319. [Google Scholar] [CrossRef]
- Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Taati Zadeh, H. Multivariate Statistical Analysis of Surface Water Quality Based on Correlations and Variations in the Data Set. Desalination 2010, 260, 129–136. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.; Khakpour, A.; Shahbazbegian, M.; Badam, H.M.K.; Vesali-Naseh, M. Chemometric Analysis of Surface Water Quality Data: Case Study of the Gorganrud River Basin, Iran. Environ. Model. Assess. 2012, 17, 411–420. [Google Scholar] [CrossRef]
Abbreviation | Parameter | Abbreviation | Parameter |
---|---|---|---|
Al | Aluminum | Ni | Nickel |
ALKY | Alkalinity | NO2 | Nitrite |
As | Arsenic | NO3 | Nitrate |
Ba | Barium | ON | Organic nitrogen |
BOD5 | Biochemical oxygen demand | ORTO_PO4 | Orthophosphates |
BOD5_SOL | Soluble biochemical oxygen demand | Pb | Lead |
Cd | Cadmium | pH | Hydrogen potential |
CN- | Cyanide | Sulfide | Sulfur |
COD | Chemical oxygen demand | SO4 | Sulfates |
COD_SOL | Soluble Chemical oxygen demand | SS | Suspended solids |
COND | Conductivity | TC | Total coliforms |
Cr | Chromium | TDS | Total dissolved solids |
Cu | Copper | TEMP | Temperature |
DO | Dissolved oxygen | TEMPA | Ambient temperature |
E_COLI | E. coli | TH | Total hardness |
F- | Fluoride | TKN | Total Kjeldahl nitrogen |
FC | Fecal coliforms | TN | Total nitrogen |
Fe | Iron | TOC | Total organic carbon |
FOG | Fat, oil, and grease | TOC_SOL | Soluble organic carbon |
Hg | Mercury | TP | Total phosphorus |
MBAS | Methylene blue active substances | TS | Total solids |
Mn | Manganese | TSS | Total suspended solids |
Na | Sodium | TURB | Turbidity |
NH3 | Ammonia | Zn | Zinc |
Surface Water Source | CONAGUA | CEA | Neighboring Monitoring Sites |
---|---|---|---|
Lerma River | L01, L07, D03 | RL01, RL02 | RL02-L07 |
Zula River | Z02 | RZ01, RZ02, RZ03, RZ04, RZ05 | |
Santiago River | S01, S02, S05, S06, S07, S08, S09, S10, S11 | RS01, RS02, RS03, RS04, RS05, RS06, RS07, RS08, RS09, RS10, RS11 | S08-RS05, S09-RS06, RS04-S07, S06-RS02, S01-RS11 |
El Ahogado Stream | A03, A05 | AA-1 AA-2 | AA1-A03 AA2-A05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradilla-Hernández, M.S.; Díaz-Vázquez, D.; Yebra-Montes, C.; del Castillo, A.F.; Shear, H.; Garcia-Gonzalez, A.; de Anda, J.; Mazari-Hiriart, M. Assessment of the Potential of Coordinating Two Interacting Monitoring Networks within the Lerma-Santiago Hydrologic System in Mexico. Water 2022, 14, 1687. https://doi.org/10.3390/w14111687
Gradilla-Hernández MS, Díaz-Vázquez D, Yebra-Montes C, del Castillo AF, Shear H, Garcia-Gonzalez A, de Anda J, Mazari-Hiriart M. Assessment of the Potential of Coordinating Two Interacting Monitoring Networks within the Lerma-Santiago Hydrologic System in Mexico. Water. 2022; 14(11):1687. https://doi.org/10.3390/w14111687
Chicago/Turabian StyleGradilla-Hernández, Misael Sebastián, Diego Díaz-Vázquez, Carlos Yebra-Montes, Alberto Fernández del Castillo, Harvey Shear, Alejandro Garcia-Gonzalez, José de Anda, and Marisa Mazari-Hiriart. 2022. "Assessment of the Potential of Coordinating Two Interacting Monitoring Networks within the Lerma-Santiago Hydrologic System in Mexico" Water 14, no. 11: 1687. https://doi.org/10.3390/w14111687
APA StyleGradilla-Hernández, M. S., Díaz-Vázquez, D., Yebra-Montes, C., del Castillo, A. F., Shear, H., Garcia-Gonzalez, A., de Anda, J., & Mazari-Hiriart, M. (2022). Assessment of the Potential of Coordinating Two Interacting Monitoring Networks within the Lerma-Santiago Hydrologic System in Mexico. Water, 14(11), 1687. https://doi.org/10.3390/w14111687