# The Effect of River Channel Characteristics on Landslide-Generated Waves and the Dynamic Water Pressure of the Dam Surface

^{*}

## Abstract

**:**

## 1. Introduction

^{3}on the left bank collapsed into the Vajont reservoir of Italy and triggered impulse waves that had a wave amplitude over 235 m above the water level. The waves overtopped the dam and destroyed the dam facilities and many lives [2]. The impact of landslide-generated impulse waves is considered one of the notable secondary hazards and is sometimes stronger than the landslide itself, especially in the reservoir area. Numerous reservoir areas that have suffered from landslides are in mountainous regions, where landslide-generated wave formation and propagation are greatly influenced by the river channel and opposite bank. Owing to the frequency and damage, the study on landslide-generated wave characteristics in the reservoir area is of paramount significance for hazard prediction and prevention in mountainous reservoir areas.

## 2. Methodology

#### 2.1. VOF Method and Flow3D Software

#### 2.2. Model Validation

#### 2.3. Model Settling

## 3. Numerical Results

#### 3.1. Influence of River Channel Characteristics on Wave Propagation

#### 3.1.1. Influence of Water Depth

#### 3.1.2. Influence of Water Surface Width

#### 3.1.3. Influence of River Bending Angle

#### 3.2. Distribution of Dynamic Water Pressure on Dam Surface

#### 3.2.1. Influence of Distance between Dam Site and Landslide Location

#### 3.2.2. Influence of Water Depth and Width of Water Surface

#### 3.2.3. Influence of River Bending Angle

## 4. Discussion

#### 4.1. Effect Mechanism of Channel Characteristics on Wave Propagation

#### 4.2. Prediction Model for Propagation Wave Height

#### 4.3. Effect Mechanism of Wave Characteristics on the Distribution of Dynamic Pressure

## 5. Limitations and Future Works

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Panizzo, A.; De Girolamo, P.; Di Risio, M.; Maistri, A.; Petaccia, A. Great Landslide Events in Italian Artificial Reservoirs. Nat. Hazards Earth Syst. Sci.
**2005**, 5, 733–740. [Google Scholar] [CrossRef] [Green Version] - Zaniboni, F.; Tinti, S. The 1963 Vajont Landslide: A Numerical Investigation on the Sliding Surface Heterogeneity. Pure Appl. Geophys.
**2019**, 176, 279–295. [Google Scholar] [CrossRef] - Tan, H.; Chen, S. A Hybrid DEM-SPH Model for Deformable Landslide and Its Generated Surge Waves. Adv. Water Resour.
**2017**, 108, 256–276. [Google Scholar] [CrossRef] - Watts, P. Water Waves Generated by Underwater Landslides; California Institute of Technology: Pasadena, CA, USA, 1997. [Google Scholar]
- Ataie-Ashtiani, B.; Najafi-Jilani, A. Laboratory Investigations on Impulsive Waves Caused by Underwater Landslide. Coast. Eng.
**2008**, 55, 989–1004. [Google Scholar] [CrossRef] - Fritz, H.M.; Hager, W.H.; Minor, H.E. Landslide Generated Impulse Waves. Exp. Fluids
**2003**, 35, 505–519. [Google Scholar] [CrossRef] - Meng, Z. Experimental Study on Impulse Waves Generated by a Viscoplastic Material at Laboratory Scale. Landslides
**2018**, 15, 1173–1182. [Google Scholar] [CrossRef] - Mohammed, F.; Fritz, H.M. Experiments on Tsunamis Generated by 3D Granular Landslides. In Submarine Mass Movements and Their Consequences; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Panizzo, A.; De Girolamo, P.; Petaccia, A. Forecasting Impulse Waves Generated by Subaerial Landslides. J. Geophys. Res. Ocean.
**2005**, 110, 1–23. [Google Scholar] [CrossRef] - Ataie-Ashtiani, B.; Nik-Khah, A. Impulsive Waves Caused by Subaerial Landslides. Environ. Fluid Mech.
**2008**, 8, 263–280. [Google Scholar] [CrossRef] - Noda, E. Water Waves Generated by Landslides. ASCE Waterw.
**1970**, 96, 835–855. [Google Scholar] [CrossRef] - Walder, J.S.; Sorensen, O.E.; Watts, P. Water Waves Generated by Subaerial Mass Flows. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2001; Volume 2001, p. H22G-02. [Google Scholar]
- Zweifel, A.; Hager, W.H.; Minor, H.E. Plane Impulse Waves in Reservoirs. J. Waterw. Port Coast. Ocean Eng.
**2006**, 132, 358–368. [Google Scholar] [CrossRef] - Heller, V. Landslide Generated Impulse Waves: Prediction of near Field Characteristics. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2007. [Google Scholar]
- Viroulet, S.; Sauret, A.; Kimmoun, O. Tsunami Generated by a Granular Collapse down a Rough Inclined Plane. EPL Europhys. Lett.
**2014**, 105, 3. [Google Scholar] [CrossRef] [Green Version] - Huang, B.; Yin, Y.; Chen, X.; Liu, G.; Wang, S.; Jiang, Z. Experimental Modeling of Tsunamis Generated by Subaerial Landslides: Two Case Studies of the Three Gorges Reservoir, China. Environ. Earth Sci.
**2014**, 71, 3813–3825. [Google Scholar] - Heinrich, P. Nonlinear Water Waves Generated by Submarine and Aerial Landslides. J. Waterw. Port Coast. Ocean Eng.
**1992**, 118, 249–266. [Google Scholar] [CrossRef] - Abadie, S.; Morichon, D.; Grilli, S.; Glockner, S. Numerical Simulation of Waves Generated by Landslides Using a Multiple-Fluid Navier–Stokes Model—ScienceDirect. Coast. Eng.
**2010**, 57, 779–794. [Google Scholar] [CrossRef] - Grilli, S.T.; Asce, M.; Watts, P. Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses. J. Waterw. Port Coast. Ocean. Eng.
**2005**, 131, 283–297. [Google Scholar] [CrossRef] - Yuk, D.; Yim, S.; Liu, P. Numerical Modeling of Submarine Mass-Movement Generated Waves Using RANS Model. Comput. Geosci.
**2006**, 32, 927–935. [Google Scholar] [CrossRef] - Ataie-Ashtiani, B.; Shobeyri, G. Numerical Simulation of Landslide Impulsive Waves by Incompressible Smoothed Particle Hydrodynamics. Int. J. Numer. Methods Fluids
**2008**, 56, 209–232. [Google Scholar] [CrossRef] - Schwaiger, H.F.; Higman, B. Lagrangian Hydrocode Simulations of the 1958 Lituya Bay Tsunamigenic Rockslide. Geochem. Geophys. Geosyst.
**2007**, 8, Q07006. [Google Scholar] [CrossRef] - Vacondio, R.; Mignosa, P.; Pagani, S. 3D SPH Numerical Simulation of the Wave Generated by the Vajont Rockslide. Adv. Water Resour.
**2013**, 59, 146–156. [Google Scholar] [CrossRef] - Shi, C.; An, Y.; Wu, Q.; Liu, Q.; Cao, Z. Numerical Simulation of Landslide-Generated Waves Using a Soil–Water Coupling Smoothed Particle Hydrodynamics Model. Adv. Water Resour.
**2016**, 92, 130–141. [Google Scholar] [CrossRef] [Green Version] - Wang, W.; Chen, G.Q.; Hong, Z.; Zhou, S.H.; Liu, S.G.; Wu, Y.Q.; Fan, F.S. Analysis of Landslide-Generated Impulsive Waves Using a Coupled DDA-SPH Method. Eng. Anal. Bound. Elem.
**2016**, 64, 267–277. [Google Scholar] [CrossRef] - Chen, C. Destabilizing Mechanism Analysis and Stability Evaluation of a Large Accumulation Bank Slope at an Alpine George Reservoir; Chengdu University of Technology: Chengdu, China, 2011. [Google Scholar]
- Huang, B.L.; Yin, Y.P.; Wang, S.C.; Tan, J.M.; Chen, X.T.; Liu, G.N. Analysis of Landslide Generated Impulse Waves; Science Press: Beijing, China, 2019. [Google Scholar]
- Risio, M.D.; Bellotti, G.; Panizzo, A.; Girolamo, P.D. Three-Dimensional Experiments on Landslide Generated Waves at a Sloping Coast. Coast. Eng.
**2009**, 56, 659–671. [Google Scholar] [CrossRef] - Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc.
**1977**, 181, 375–389. [Google Scholar] [CrossRef] - Gomez-Gesteira, M.; Rogers, B.D.; Dalrymple, R.A.; Crespo, A.J.C. State-of-the-Art of Classical SPH for Free-Surface Flows. J. Hydraul. Res.
**2010**, 48, 6–27. [Google Scholar] [CrossRef] - Monaghan, J.J. Simulating Free Surface Flows with SPH. J. Comput. Phys.
**1994**, 110, 399–406. [Google Scholar] [CrossRef] - Dalrymple, R.A.; Rogers, B.D. Numerical Modeling of Water Waves with the SPH Method. Coast. Eng
**2006**, 53, 141–147. [Google Scholar] [CrossRef] - Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Bayon, A.; Toro, J.P.; Bombardelli, F.A.; Matos, J.; López-Jiménez, P.A. Influence of VOF Technique, Turbulence Model and Discretization Scheme on the Numerical Simulation of the Non-Aerated, Skimming Flow in Stepped Spillways. J. Hydro-Environ. Res.
**2017**, 19, 137–149. [Google Scholar] [CrossRef] [Green Version] - Hager, W.H.; Giudice, G.D.; Wu, W.; Wang, S. Movable Bed Roughness in Alluvial Rivers. J. Hydraul. Eng.
**2001**, 127, 627–629. [Google Scholar] [CrossRef] - Rodriguez, J.; Bombardelli, F.; García, M.; Frothingham, K.; Rhoads, B.; Abad, J. High-Resolution Numerical Simulation of Flow Through a Highly Sinuous River Reach. Water Resour. Manag.
**2004**, 18, 177–199. [Google Scholar] [CrossRef] - Lynett, P.; Liu, L.F. A Numerical Study of Submarine-Landslide-Generated Waves and Run-Up. Proc. Math. Phys. Eng. Sci.
**2002**, 458, 2885–2910. [Google Scholar] [CrossRef] - Grilli, S.T.; Watts, P. Tsunami Generation by Submarine Mass Failure. II: Predictive Equations and Case Studies. J. Waterw. Port Coast. Ocean Eng.
**2005**, 131, 298–310. [Google Scholar] - Ataie-Ashtiani, B.; Najafi-Jilani, A. Prediction of Submerged Landslide Generated Waves in Dam Reservoirs: An Applied Approach. Dam Eng.
**2006**, 17, 135. [Google Scholar]

**Figure 2.**Comparison of water surface fluctuation in near-field area of Case 76 between the experiment and numerical calculation.

**Figure 4.**Fluctuation of free water level at the crossed section in different water depths: (

**A**) t = 0.69 s; (

**B**) t = 2.72 s.

**Figure 5.**Variation of wave amplitude above still water level with propagation distance in different water depths.

**Figure 6.**Wave surface variation of different observation places in different widths of water level: (

**A**) S = 14 m; (

**B**) S = 70 m; (

**C**) S = 100 m.

**Figure 7.**Parameters of river channels; (

**A**) 90° river channel; (

**B**) 120° river channel; (

**C**) 150° river channel; (

**D**) 180° river channel.

**Figure 8.**Wave propagation characteristics at different times in 90° curved channel: (

**A**) t = 1.005 s; (

**B**) t = 7.200s; (

**C**) t = 11.185 s; (

**D**) t = 18.774 s; (

**E**) t = 37.822 s; (

**F**) t = 48.173 s.

**Figure 10.**Distribution of dynamic water pressure by elevation in different distances between dam site and landslide location: (

**A**) X = 5 m; (

**B**) X = 10, 15, 20, 25 m.

**Figure 11.**Distribution of dynamic pressure by elevation at different water depths, widths of water level and river bend angles: (

**A**) water depth; (

**B**) width of water level; (

**C**) bending angle of river channel.

**Figure 12.**Variation in wave amplitude with water depth, width of water surface and river bending angle: (

**A**) water depth; (

**B**) water surface width; (

**C**) river bending angle.

**Figure 13.**Comparison between the numerical values and values derived by the prediction formula for propagation wave amplitude.

**Figure 14.**Variation in dynamic pressure with channel width and river bending angle at different elevations; (

**A**) width of river channel; (

**B**) river bending angle.

Case | Slide Deformability | Slide Shape | ${l}_{s}$(cm) | ${w}_{s}$(cm) | ${h}_{s}$(cm) | ${h}_{0}$(cm) | ${h}_{0c}$(cm) | $\alpha $(deg) |
---|---|---|---|---|---|---|---|---|

Model for validation | Rigid | Cuboid | 30 | 20 | 13 | 50 | 2.5 | 45 |

Model for simulation | Rigid | Cuboid | 900 | 750 | 300 | 1000 | 0 | 45 |

Water Depth (m) | Water Surface Width (m) | River Bending Angle (deg) |
---|---|---|

8 | 21 | 90 |

10 | 23 | 120 |

12 | 25 | 150 |

14 | 27 | 180 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, X.; Shuang, N.; Lu, X.; Xiong, B.; Ming, H.; Cai, Z.; Liu, X.
The Effect of River Channel Characteristics on Landslide-Generated Waves and the Dynamic Water Pressure of the Dam Surface. *Water* **2022**, *14*, 1543.
https://doi.org/10.3390/w14101543

**AMA Style**

Zhang X, Shuang N, Lu X, Xiong B, Ming H, Cai Z, Liu X.
The Effect of River Channel Characteristics on Landslide-Generated Waves and the Dynamic Water Pressure of the Dam Surface. *Water*. 2022; 14(10):1543.
https://doi.org/10.3390/w14101543

**Chicago/Turabian Style**

Zhang, Xiaogang, Ning Shuang, Xiaochun Lu, Bobo Xiong, Huajun Ming, Zhenglong Cai, and Xiao Liu.
2022. "The Effect of River Channel Characteristics on Landslide-Generated Waves and the Dynamic Water Pressure of the Dam Surface" *Water* 14, no. 10: 1543.
https://doi.org/10.3390/w14101543