Flood Risk-Related Research Trends in Latin America and the Caribbean
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- (1)
- An initial period (2000–2005) with a variation between 1.13 and 3.00 (a = Nt/Nt-1 where t is the year, and Nt the cumulative number of published articles), accompanied by a large fluctuation, which was expected for the initial stage in this study.
- (2)
- A unimodal period (2006–2011) in which the fluctuation range was significantly reduced. It starts with a slow growth period from 1.18 to 1.38 and then decreases to 1.13.
- (3)
- A stable development period stretching from 2012 to 2020. In this period, the value of a is stable at about 1.19, and the variance is 0.002. This stage implies that research entered a stable development period, with scholars paying increased attention to this field. According to the identified trend, flood-related studies will remain a relevant topic, and it seems to have been triggered by the years major ENSO events are recorded (2002–2003, 2004–2005, 2009–2010, 2015–2016, and 2019 [15].
4. Discussion
4.1. Countries
4.2. Annual Pattern
4.3. Journals
4.4. Altitude
4.5. Keywords
4.6. Aims and Methods
4.7. Perspectives for Flood Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Evaluate climate and rainfall attributes: Trends in precipitation extremes and characteristics due to climate change (e.g., frequency analysis of rainfall, climate models).
- Flood hazard and risk assessment: Identify areas/assets at risk of flooding, and consequently to improve flood risk management and disaster prevention (e.g., flood mapping, develop a flood risk methodology).
- Evaluate physiography, geomorphology, and ecosystem functioning: Determine changes in landscape functionating (e.g., assess the influence of different land use and land cover, dynamics of floodplain environments).
- Social aspects, vulnerability and resilience: People behaviour and dynamics in flooding events (e.g., measure perceptions of flooding and resilience to flooding by context, gender and time, develop a vulnerability index).
- Statistical analysis: Identify trends by applying statistical methods (e.g., flood uncertainty, flood reconstruction).
- Climatological and hydrometeorological analysis: (e.g., standardized precipitation index, object-based rainfall analysis, historical climatology analysis).
- Flood hazard modelling and risk assessment: (e.g., flood hydrodynamic modelling, flood loss models).
- Physiographic, geomorphologic, and ecosystem functioning analysis: (e.g., land morphology mapping, paleotempestology, space-time analysis of land-use changes).
- Social assessment, vulnerability and resilience analysis: (e.g., vulnerability estimation by bivariate correlations, resilience index, semi-structured interviews, qualitative case study approach).
- Statistical methods: (e.g., multicriteria analysis, fractal analysis, generalized likelihood uncertainty estimation).
- GIS and remote sensing: (e.g., topographic map, satellite imagery, ArcGIS, digital elevations models).
References
- Jongman, B.; Ward, P.J.; Aerts, J.C. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Change 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Tanoue, M.; Sasaki, O.; Zhou, X.; Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 2021, 11, 3740. [Google Scholar] [CrossRef]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Dottori, F.; Szewczyk, W.; Ciscar, J.C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Feyen, L. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Sandoval, V.; Sarmiento, J.P. A neglected issue: Informal settlements, urban development, and disaster risk reduction in Latin America and the Caribbean. Dis. Prev. Manag. 2020, 29, 731–745. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Vera, C. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. Int. J. Dis. Risk Sci. 2020, 11, 394–403. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Diaz-Simal, P.; Mendez, F.J.; Beck, M.W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 2015, 10, e0133409. [Google Scholar] [CrossRef]
- Campos-Durán, D.; Quesada-Román, A. Riesgos intensivos y extensivos en América Central entre 1990 y 2015. Anuá. Inst. Geoci. 2017, 40, 234–249. [Google Scholar] [CrossRef]
- Guevara-Murua, A.; Williams, C.A.; Hendy, E.J.; Imbach, P. 300 years of hydrological records and societal responses to droughts and floods on the Pacific coast of Central America. Clim. Past 2018, 14, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Viale, M.; Valenzuela, R.; Garreaud, R.D.; Ralph, F.M. Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeorol. 2018, 19, 1671–1687. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett. 2019, 46, 1814–1823. [Google Scholar] [CrossRef]
- CPC-Climate Prediction Center. El Niño/Southern Oscillation (ENSO). National Oceanic and Atmospheric Administration (NOAA), National Weather Service (NWS), College Park, MD, USA, 2021. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 18 October 2021).
- Stadel, C. Altitudinal belts in the tropical Andes: Their ecology and human utilization. In Yearbook (Conference of Latin Americanist Geographers), Auburn, AL, USA; University of Texas Press: Austin, TX, USA, 1990; pp. 45–60. Available online: https://www.jstor.org/stable/25765738 (accessed on 10 July 2021).
- Díez-Herrero, A.; Garrote, J. Flood risk analysis and assessment, applications and uncertainties: A bibliometric review. Water 2020, 12, 2050. [Google Scholar] [CrossRef]
- Fang, J.; Li, M.; Shi, P. Mapping Flood Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Sun, S.; Fang, J.; Shi, P. Mapping Storm Surge Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2014. Available online: https://www.ipcc.ch/sr15/ (accessed on 22 June 2021).
- Emmer, A. Geographies and scientometrics of research on natural hazards. Geosciences 2018, 8, 382. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Ruan, T. Bibliometric analysis of global research progress on coastal flooding 1995–2016. Chin. Geogr. Sci. 2018, 28, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Borges Leal da Silva, L.; Alencar, M.H.; de Almeida, A.T. Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int. J. Disaster Risk Reduct. 2020, 50, 101865. [Google Scholar] [CrossRef]
- Abbott, J.H. How to choose where to publish your work. J. Orthop. Sports Phys. Ther. 2017, 47, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Comm. 2019, 10, 4844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinos, J.; Timbe, L.; Timbe, E. Evaluation of 1D hydraulic models for the simulation of mountain fluvial floods: A case study of the Santa Bárbara River in Ecuador. Water Pract. Technol. 2019, 14, 341–354. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Granados-Bolaños, S.; Birkel, C.; Stoffel, M. Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology 2022, 396, 108000. [Google Scholar] [CrossRef]
- Pinos, J.; Timbe, L. Mountain riverine floods in Ecuador: Issues, challenges, and opportunities. Front. Water 2020, 2, 36. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in mountain environments: A synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Glacial lakes in the Andes under a changing climate: A review. J. Earth Sci. 2021, 32, 1575–1593. [Google Scholar] [CrossRef]
- Bekhuis, T. Keywords, discoverability, and impact. J. Med. Libr. Assoc. 2015, 103, 119. [Google Scholar] [CrossRef] [Green Version]
- Uddin, S.; Khan, A. The impact of author-selected keywords on citation counts. J. Informetr. 2016, 10, 1166–1177. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide research trends in landslide science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef]
- Martinsson, A. A coherent philosophy of titles, abstracts and keywords in scientific articles. In Scientific Information Transfer: The Editor’s Role; Balaban, M., Ed.; Springer: Dordrecht, The Netherlands, 1978. [Google Scholar] [CrossRef]
- Pinos, J.; Orellana, D.; Timbe, L. Assessment of microscale economic flood losses in urban and agricultural areas: Case study of the Santa Bárbara River, Ecuador. Nat. Hazards 2020, 103, 2323–2337. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Villalobos-Chacón, A. Flash flood impacts of Hurricane Otto and hydrometeorological risk mapping in Costa Rica. Geogr. Tidsskr. 2020, 120, 142–155. [Google Scholar] [CrossRef]
- García-Soriano, D.; Quesada-Román, A.; Zamorano-Orozco, J.J. Geomorphological hazards susceptibility in high-density urban areas: A case study of Mexico City. J. S. Am. Earth Sci. 2020, 102, 102667. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Villalobos-Portilla, E.; Campos-Durán, D. Hydrometeorological disasters in urban areas of Costa Rica, Central America. Environ. Hazards 2021, 20, 264–278. [Google Scholar] [CrossRef]
- Thampapillai, D.J.; Musgrave, W.F. Flood damage mitigation: A review of structural and nonstructural measures and alternative decision frameworks. Water Resour. Res. 1985, 21, 411–424. [Google Scholar] [CrossRef]
- Schanze, J.; Hutter, G.; Offert, A.; Penning-Rowsell, E.C.; Parker, D.; Harries, T.; Werritty, A.; Nachtnebel, H.-P.; Holzmann, H.; Neuhold, C.; et al. Systematisation, Evaluation and Context Conditions of Structural and Non-Structural Measures for Flood Risk Reduction. (CRUE Research report; No. I-1). CRUE Funding Initiative on Flood Risk Management Research. 2008. Available online: http://www.flood-era.ioer.de/files/FLOOD-ERA_Final_report.pdf (accessed on 9 December 2021).
Country | No. of Studies | Percentage | 2000–2020 |
---|---|---|---|
Mexico | 80 | 26.5 | |
Brazil | 61 | 20.2 | |
Chile | 29 | 9.6 | |
Peru | 23 | 7.6 | |
Argentina | 20 | 6.6 | |
Journal | No. of Studies | Percentage | 2000–2020 |
---|---|---|---|
Natural Hazards | 27 | 8.9 | |
Journal of Flood Risk Management | 16 | 5.3 | |
Natural Hazards and Earth System Sciences | 13 | 4.3 | |
Water | 12 | 4.0 | |
Journal of Hydrology | 9 | 3.0 | |
Hydrological Sciences Journal | 8 | 2.6 | |
Sustainability | 8 | 2.6 | |
Geomorphology | 5 | 1.6 | |
Hydrological Processes | 5 | 1.6 | |
International Journal of Disaster Risk Reduction | 5 | 1.6 | |
Altitudinal Range | Climatic Zone | Class | No. of Studies | Percentage | 2000–2020 |
---|---|---|---|---|---|
0–1000 | Hot zone | A | 232 | 76.8 | |
1000–2000 | Temperate zone | B | 28 | 9.2 | |
2000–4000 | Cold zone | C | 35 | 11.5 | |
>4000 | Glacial zone | D | 7 | 2.3 | |
Keywords | Frequency | Percentage | Cumulative Percentage |
---|---|---|---|
Flood/s | 37 | 2.8 | 2.8 |
Flooding | 20 | 1.5 | 4.3 |
Mexico | 20 | 1.5 | 5.8 |
Flash flood/s | 16 | 1.2 | 7.0 |
Vulnerability | 16 | 1.2 | 8.2 |
Flood risk | 15 | 1.1 | 9.3 |
GLOF | 12 | 0.9 | 10.2 |
Climate change | 11 | 0.8 | 11.0 |
Natural Hazard/s | 11 | 0.8 | 11.8 |
Hazard/s | 10 | 0.7 | 12.5 |
Class | Aim | No. of Studies * | Percentage |
---|---|---|---|
1 | Evaluate climate and rainfall attributes | 12 | 3.8 |
2 | Flood hazard and risk assessment | 213 | 67.6 |
3 | Evaluate physiography, geomorphology, and ecosystem functioning | 19 | 6.0 |
4 | Social aspects, vulnerability, and resilience | 39 | 12.4 |
5 | Statistical analysis | 32 | 10.2 |
Class | Method | No. of Studies * | Percentage |
---|---|---|---|
1 | Climatological and hydrometeorological analysis | 16 | 5.0 |
2 | Flood hazard modelling and risk assessment | 123 | 38.7 |
3 | Physiographical, geomorphological and ecosystem functioning analysis | 35 | 11.0 |
4 | Social assessment, vulnerability and resilience analysis | 34 | 10.7 |
5 | Statistical methods | 37 | 11.6 |
6 | GIS and remote sensing | 73 | 23.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinos, J.; Quesada-Román, A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water 2022, 14, 10. https://doi.org/10.3390/w14010010
Pinos J, Quesada-Román A. Flood Risk-Related Research Trends in Latin America and the Caribbean. Water. 2022; 14(1):10. https://doi.org/10.3390/w14010010
Chicago/Turabian StylePinos, Juan, and Adolfo Quesada-Román. 2022. "Flood Risk-Related Research Trends in Latin America and the Caribbean" Water 14, no. 1: 10. https://doi.org/10.3390/w14010010
APA StylePinos, J., & Quesada-Román, A. (2022). Flood Risk-Related Research Trends in Latin America and the Caribbean. Water, 14(1), 10. https://doi.org/10.3390/w14010010