A Local Model and Experimental Verification of the Crossflow Filtration of a Polydispersed Slurry
Abstract
1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Solution Method
2.3. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Domany, Z.; Galambos, I.; Vatai, G.; Bekassy-Molnar, E. Humic substances removal from drinking water by membrane filtration. Desalination 2002, 145, 333–337. [Google Scholar] [CrossRef]
- Tracey, E.M.; Davis, R.H. Protein fouling of track-etched polycarbonate microfiltration membranes. J. Colloid Interface Sci. 1994, 167, 104–116. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Yalçın, E.; Arıca, M.Y. Characterization of polyethylenimine grafted and cibacron blue f3ga immobilized poly(hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 264, 195–202. [Google Scholar] [CrossRef]
- Huotari, H.M.; Huisman, I.H.; Trägårdh, G. Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode. J. Membr. Sci. 1999, 156, 49–60. [Google Scholar] [CrossRef]
- Meier-Haack, J.; Booker, N.A.; Carroll, T. A permeability-controlled microfiltration membrane for reduced fouling in drinking water treatment. Water Res. 2003, 37, 585–588. [Google Scholar] [CrossRef]
- Sadr Ghayeni, S.B.; Beatson, P.J.; Schneider, R.P.; Fane, A.G. Adhesion of waste water bacteria to reverse osmosis membranes. J. Membr. Sci. 1998, 138, 29–42. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Wu, M.L.; Zall, R.R.; Tzeng, W.C. Microfiltration and ultrafiltration comparison for apple juice clarification. J. Food Sci. 1990, 55, 1162–1163. [Google Scholar] [CrossRef]
- Razi, B.; Aroujalian, A.; Fathizadeh, M. Modeling of fouling layer deposition in cross-flow microfiltration during tomato juice clarification. Food Bioprod. Process. 2012, 90, 841–848. [Google Scholar] [CrossRef]
- El Rayess, Y.; Albasi, C.; Bacchin, P.; Taillandier, P.; Raynal, J.; Mietton-Peuchot, M.; Devatine, A. Cross-flow microfiltration applied to oenology: A review. J. Membr. Sci. 2011, 382, 1–19. [Google Scholar] [CrossRef]
- Bailey, S.M.; Meagher, M.M. The effect of denaturants on the crossflow membrane filtration of escherichia coli lysates containing inclusion bodies. J. Membr. Sci. 1997, 131, 29–38. [Google Scholar] [CrossRef]
- Li, T.; Bai, R.; Liu, J. Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. J. Biotechnol. 2008, 135, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.T.; Zydney, A.L. Protein fouling during microfiltration: Comparative behavior of different model proteins. Biotechnol. Bioeng. 1997, 55, 91–100. [Google Scholar] [CrossRef]
- Héran, M.; Elmaleh, S. Prediction of cross-flow microfiltration through an inorganic tubular membrane with high-frequency retrofiltration. Chem. Eng. Sci. 2001, 56, 3075–3082. [Google Scholar] [CrossRef]
- Trettin, D.R.; Doshi, M.R. Limiting flux in ultrafiltration of macromolecular solutions. Chem. Eng. Commun. 2007, 4, 507–522. [Google Scholar] [CrossRef]
- Zydney, A.L.; Colton, C.K. A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspensions. Chem. Eng. Commun. 2007, 47, 1–21. [Google Scholar] [CrossRef]
- Zawicki, I.; Malchesky, P.S.; Smith, J.W.; Harasaki, H.; Asanuma, Y.; Nose, Y. Axial changes of blood and plasma flow, pressure, and cellular deposition in capillary plasma filters. Artif. Organs 1981, 5, 241–247. [Google Scholar] [CrossRef]
- Ho, B.P.; Leal, L.G. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 2006, 65, 365–400. [Google Scholar] [CrossRef]
- Vasseur, P.; Cox, R.G. The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 2006, 78, 385–413. [Google Scholar] [CrossRef]
- Park, Y.G. Effect of hydraulic pressure and electric field on electro-microfiltration in the wine-brewery industry. Desalination 2006, 191, 411–416. [Google Scholar] [CrossRef]
- Gutman, R. Hyperfiltration and ultrafiltration in plate and frame systems. Chem. Eng. J. 1977, 14, 231–232. [Google Scholar] [CrossRef]
- Altena, F.W.; Belfort, G. Lateral migration of spherical particles in porous flow channels: Application to membrane filtration. Chem. Eng. J. 1984, 39, 343–355. [Google Scholar] [CrossRef]
- Dharmappa, H.B.; Verink, J.; Ben Aim, R.; Yamamoto, K.; Vigneswaran, S. A comprehensive model for cross-flow filtration incorporating polydispersity of the influent. J. Membr. Sci. 1992, 65, 173–185. [Google Scholar] [CrossRef]
- Foley, G.; Malone, D.M.; MacLoughlin, F. Modelling the effects of particle polydispersity in crossflow filtration. J. Membr. Sci. 1995, 99, 77–88. [Google Scholar] [CrossRef]
- Ofsthun, N.J. Crossflow membrane filtration of cell suspensions. PhD Thesis, MIT, Cambridge, MA, USA, 1989. [Google Scholar]
- Rahimi, M.; Madaeni, S.S.; Abbasi, K. CFD modeling of permeate flux in cross-flow microfiltration membrane. J. Membr. Sci. 2005, 255, 23–31. [Google Scholar] [CrossRef]
- Mondor, M. Theoretical analysis of the influence of the axial variation of the transmembrane pressure in cross-flow filtration of rigid spheres. J. Membr. Sci. 1994, 152, 71–87. [Google Scholar] [CrossRef]
- Singh, V.; Purkait, M.K.; Das, C. Cross-Flow Microfiltration of Industrial Oily Wastewater: Experimental and Theoretical Consideration. Separation Science and Technology. Sep. Sci. Tech. 1994, 46, 1213–1223. [Google Scholar] [CrossRef]
- Eckstein, E.C.; Bailey, D.G.; Shapiro, A.H. Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 2006, 79, 191–208. [Google Scholar] [CrossRef]
- Belfort, G.; Davis, R.H.; Zydney, A.L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci. 1994, 96, 1–58. [Google Scholar] [CrossRef]
- Drew, D.A.; Schonberg, J.A.; Belfort, G. Lateral inertial migration of a small sphere in fast laminar flow through a membrane duct. Chem. Eng. Sci. 1991, 46, 3219–3224. [Google Scholar] [CrossRef]
- Lister, V.Y.; Lucas, C.; Gordon, P.W.; Chew, Y.M.J.; Wilson, D.I. Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration. J. Membr. Sci. 2011, 366, 304–313. [Google Scholar] [CrossRef]
- Dizge, N.; Soydemir, G.; Karagunduz, A.; Keskinler, B. Influence of type and pore size of membranes on cross flow microfiltration of biological suspension. J. Membr. Sci. 2011, 366, 278–285. [Google Scholar] [CrossRef]
- Sarkar, B.; De, S. Prediction of permeate flux for turbulent flow in cross flow electric field assisted ultrafiltration. J. Membr. Sci. 2011, 369, 77–87. [Google Scholar] [CrossRef]
- Sreenivas, K. Modeling of cross-flow osmotic pressure controlled membrane separation processes under turbulent flow conditions. J. Membr. Sci. 2002, 201, 203–212. [Google Scholar] [CrossRef]
- Elzo, D.; Huisman, I.; Middelink, E.; Gekas, V. Charge effects on inorganic membrane performance in a cross-flow microfiltration process. Colloids Surf. A Physicochem. Eng. Asp. 1998, 138, 145–159. [Google Scholar] [CrossRef]
- Kozeny, J. Über kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss. Wien. 1927, 136, 271–306. [Google Scholar]
- Carman, P.C. Fluid flow through granular beds. Trans. Inst. Chem. Eng. Lond. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, J.; Jiang, T.; Gao, D.; Zhang, S.; Li, H.; Yang, F. A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors. Bioresour. Technol. 2011, 102, 11121–11131. [Google Scholar] [CrossRef]
- Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Lee, C.-H.; Kim, K.-J.; Fane, A.G. Three-dimensional simulation of the deposition of multi-dispersed charged particles and prediction of resulting flux during cross-flow microfiltration. J. Membr. Sci. 1999, 161, 7–20. [Google Scholar] [CrossRef]
size (μm) | 0.010 | 0.012 | 0.015 | 0.018 | 0.022 | 0.027 | 0.033 | 0.040 | 0.049 | 0.059 | 0.072 |
(%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
size (μm) | 0.088 | 0.108 | 0.131 | 0.160 | 0.195 | 0.238 | 0.290 | 0.353 | 0.431 | 0.525 | 0.640 |
(%) | 0.00 | 0.17 | 0.53 | 1.02 | 1.68 | 2.45 | 3.17 | 3.97 | 4.36 | 4.55 | 4.35 |
size (μm) | 0.781 | 0.952 | 1.160 | 1.414 | 1.724 | 2.102 | 2.562 | 3.123 | 3.807 | 4.641 | 5.658 |
(%) | 3.70 | 2.91 | 2.12 | 1.73 | 1.69 | 1.94 | 2.27 | 2.76 | 3.10 | 3.56 | 3.92 |
size (μm) | 6.897 | 8.408 | 10.25 | 12.50 | 15.23 | 18.57 | 22.64 | 27.60 | 33.64 | 41.01 | 50.00 |
(%) | 4.26 | 4.44 | 4.90 | 4.81 | 4.92 | 4.47 | 4.17 | 3.43 | 2.79 | 2.04 | 1.42 |
size (μm) | 60.94 | 74.29 | 90.56 | 110.40 | 134.58 | 164.06 | 200.00 | ||||
(%) | 0.97 | 0.64 | 0.41 | 0.26 | 0.13 | 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yang, G.; Lu, J. A Local Model and Experimental Verification of the Crossflow Filtration of a Polydispersed Slurry. Water 2020, 12, 489. https://doi.org/10.3390/w12020489
Wang Q, Yang G, Lu J. A Local Model and Experimental Verification of the Crossflow Filtration of a Polydispersed Slurry. Water. 2020; 12(2):489. https://doi.org/10.3390/w12020489
Chicago/Turabian StyleWang, Qianyou, Guolu Yang, and Jing Lu. 2020. "A Local Model and Experimental Verification of the Crossflow Filtration of a Polydispersed Slurry" Water 12, no. 2: 489. https://doi.org/10.3390/w12020489
APA StyleWang, Q., Yang, G., & Lu, J. (2020). A Local Model and Experimental Verification of the Crossflow Filtration of a Polydispersed Slurry. Water, 12(2), 489. https://doi.org/10.3390/w12020489