Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment
Abstract
:1. Introduction
- To quantify purification of total N (TN), nitrate N (NO3-N), ammonium N (NH4-N) and dissolved organic N (DON) in a meso-scale column experiment where through-flow rate of natural runoff water corresponds to field conditions.
- To determine the adsorption rate and capacity for different N fractions.
- To study whether the concentration of incoming runoff water affects the adsorption process.
2. Material and Methods
2.1. Study Site and Water Collection
2.2. Biochar Reactor and Experimental Design
2.3. Measurements and Analyses
2.4. Adsorption and Kinetic Modeling
3. Results
4. Discussion
4.1. Evaluation of the Experiment
4.2. Biochar as a Water Protection Tool
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahtikoski, A.; Hökkä, H. Intensive forest management—Does it pay off financially on drained peatlands? Can J. For. Res. 2019, 49, 1101–1113. [Google Scholar] [CrossRef]
- Päivänen, J.; Hånell., B. Peatland Ecology and Forestry—A Sound Approach; University of Helsinki, Department of Forest Sciences Publications: Helsinki, Finland, 2012; p. 267. [Google Scholar]
- Paavilainen, E.; Päivänen, J. Peatland Forestry, Ecology and Principles; Springer Science & Business Media, Business & Economics: Berlin/Heidelberg, Germany, 1995; p. 248. [Google Scholar]
- Joensuu, S.; Ahti, E.; Vuollekoski, M. Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scand. J. For. Res. 2002, 17, 238–247. [Google Scholar] [CrossRef]
- Nieminen, M. Export of Dissolved Organic Carbon, Nitrogen and Phosphorus Following Clear-Cutting of Three Norway Spruce Forests Growing on Drained Peatlands in Southern Finland. Silva Fenn. 2004, 38, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Kaila, A.; Laurén, A.; Sarkkola, S.; Koivusalo, H.; Ukonmaanaho, L.; O’Driscoll, C.; Xiao, L.; Asam, Z.; Nieminen, M. Effect of clear-felling and harvest residue removal on nitrogen and phosphorus export from drained Norway spruce mires in southern Finland. Boreal Environ. Res. 2015, 20, 693–706. [Google Scholar]
- Nieminen, M.; Palviainen, M.; Sarkkola, S.; Laurén, A.; Marttila, H.; Finér, L. A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests. Ambio 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Gosz, J.R.; Grier, C.C.; Melillo, J.M.; Reiners, W.A.; Todd, R.L. Nitrate losses from disturbed ecosystems. Science 1979, 204, 469–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Hazlett, P.W.; Gunn, J.M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environ. Rev. 2008, 16, 157–179. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Paavolainen, L.; Smolander, A. Nitrification and denitrification in soil from a clear-cut Norway spruce (Picea abies) stand. Soil Biol. Biochem. 1998, 30, 775–781. [Google Scholar] [CrossRef]
- Smolander, A.; Kitunen, V.; Mälkönen, E. Dissolved soil organic nitrogen and carbon in a Norway spruce stand and adjacent clear-cut. Biol. Fertil. Soils 2001, 33, 190–196. [Google Scholar] [CrossRef]
- Palviainen, M.; Finér, L.; Kurka, A.M.; Mannerkoski, H.; Piirainen, S.; Starr, M. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil 2004, 263, 53–67. [Google Scholar] [CrossRef]
- Rosén, K.; Aronson, J.A.; Eriksson, H.M. Effects of clearcutting on stream water quality in forest catchments in central Sweden. For. Ecol. Manag. 1996, 83, 237–244. [Google Scholar] [CrossRef]
- Ahtiainen, M.; Huttunen, P. Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environ. Res. 1999, 4, 101–114. [Google Scholar]
- Palviainen, M.; Finér, L.; Laurén, A.; Launiainen, S.; Piirainen, S.; Mattsson, T.; Starr, M. Nitrogen, phosphorus, carbon, and suspended solids loads from forest clear-cutting and site preparation: Long-term paired catchment studies from Eastern Finland. AMBIO 2014, 43, 218–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HELCOM. State of the Baltic Sea-Second HELCOM Holistic Assessment 2011–2016. 2018, p. 155. Available online: https://portals.iucn.org/library/node/12889 (accessed on 10 February 2020).
- Rankinen, K.; Bernal, J.E.C.; Holmberg, M.; Vuorio, K.; Granlund, K. Identifying multiple stressors that influence eutrophication in a Finnish agricultural river. Sci. Total Environ. 2019, 658, 1278–1292. [Google Scholar] [CrossRef]
- Dumont, E.J.A.; Harrison, C.; Kroeze, E.; Bakker, J.; Seitzinger, S.P. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Heathwaite, A.L. Multiple stressors on water availability at global to catchment scales: Understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshw. Biol. 2010, 55 (Suppl. 1), 241–257. [Google Scholar] [CrossRef]
- Nieminen, M.; Ahti, E.; Nousiainen, H.; Joensuu, S.; Vuollekoski, M. Capacity of riparian buffer zones to reduce sediment concentrations in discharge from peatlands drained for forestry. Silva Fennica 2005, 39, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Silvan, N.; Regina, K.; Kitunen, V.; Vasander, H.; Laine, J. Gaseous nitrogen loss from a restored peatland buffer zone. Soil Biol. Biochem. 2002, 34, 721–728. [Google Scholar] [CrossRef]
- Vikman, A.; Sarkkola, S.; Sallantaus, T.; Nousiainen, H.; Silvan, N.; Laine, J.; Nieminen, M. Nitrogen retention by peatland buffer zone areas in forested catchments in Finland. Hydrobiologia 2009, 641, 171–183. [Google Scholar] [CrossRef]
- Jafari, M.; Rahimi, M.R.; Ghaedi, M.; Javadian, H.; Asfaram, A. Fixed-bed column performances of azure-II and auramine-O adsorption by Pinus eldarica stalks activated carbon and its composite with zno nanoparticles: Optimization by response surface methodology based on central composite design. J. Colloid Interface Sci. 2017, 507, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Reza, A.; Ghaedi, M.; Asfaram, A.; Hajati, S.; Mohammad, A.; Bazrafshan, A.; Reza, M. Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparticles loaded on activated carbon using second-derivative spectrophotometry. J. Taiwan Inst. Chem. Eng. 2016, 65, 212–224. [Google Scholar] [CrossRef]
- Asfaram, A.; Ghaedi, M.; Ahmadi Azqhandi, M.H.; Goudarzi, A.; Hajati, S. Ultrasound-assisted binary adsorption of dyes ontoMn@ CuS/ZnS-NC-AC as a novel adsorbent: Application of chemometrics for optimization andmodeling. J. Ind. Eng. Chem. 2017, 54, 377–388. [Google Scholar] [CrossRef]
- Dahab, M.F. Nitrate Treatment Methods: An Overview. In Nitrate Contamination; NATO ASI Series (Series G: Ecological Sciences); Bogárdi, I., Kuzelka, R.D., Ennenga, W.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 30. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ghaedi, M.; Asfaram, A.; Hajati, S. Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central composite design. J. Mol. Liq. 2006, 219, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Dil, E.A.; Ghaedi, M.; Asfaram, A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason. Sonochem. 2017, 34, 792–802. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. Karbala Int. J. Mod. Sci. 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Kearns, J.P.; Wellborn, L.S.; Summers, R.S.; Knappe, D.R.U. 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014, 62, 20–28. [Google Scholar] [CrossRef]
- Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbiological contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef]
- Gaunt, J.L.; Lehmann, J. Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production. Environ. Sci. Technol. 2008, 42, 4152–4158. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable low cost and sustainable adsorbent-a critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Long, K.; Zan, Q.; Liang, L.; Shen, G.Q. Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal. JACS 2015, 3, 125–132. [Google Scholar] [CrossRef]
- Lattao, C.; Cao, X.; Mao, J.; Schmidt-Rohr, K.; Pignatello, J.J. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environ. Sci. Technol. 2014, 48, 4790–4798. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Sarmah, A.K. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic investigation. Sci. Total Environ. 2015, 502, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yu, M.; Lu, X. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Sci. Total Environ. 2018, 640–641. [Google Scholar] [CrossRef] [PubMed]
- Foereid, B. Biochar in Nutrient Recycling—The Effect and Its Use in Wastewater Treatment. Open J. Soil Sci. 2015, 5, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2016, 197, 732–749. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Review Environmental application of biochar Current status and perspectives. Bioresour. Technol. 2018, 246, 110–122. [Google Scholar] [CrossRef]
- Palviainen, M.; Berninger, F.; Bruckman, V.J.; Köster, K.; Assumpção, C.R.M.; Aaltonen, H.; Makita, N.; Mishra, A.; Kulmala, L.; Adamczyk, B.; et al. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil. 2018, 425, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Zhang, B.; Wang, R.; Zhao, Z. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environ. Sci. Pollut. Res. 2017, 24, 26297–26309. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, T.; Kortelainen, P.; Räike, A.; Lepistö, A.; Thomas, D.N. Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Sci. Total Environ. 2015, 508, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.J.; Huang, Q.S.; Wang, C.; Ni, T.Y.; Sun, J.; Wei, W. Competitive adsorption of heavy metals i n aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 2019, 219, 351–357. [Google Scholar] [CrossRef]
- Pirinen, P.; Simola, H.; Aalto, J.; Kaukoranta, J.-P.; Karlsson, P.; Ruuhela, R. Climatological Statistics of Finland 1981–2010; Finnish Meteorological Institute: Helsinki, Finland, 2012; Volume 1, p. 96.
- Micromeritics Flowsrb II 2300; Micromeritics Instrument Corporation: Atlanta, GA, USA, 1986.
- Haahti, K. Modelling Hydrology and Sediment Transport in a Drained Peatland Forest. Focus on Sediment Load Generation and Control after Ditch Network Maintenance. Aalto University publication series. Ph.D. Thesis, Aalto University, Helsinki, Finland, 2018; p. 52. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Sigh, A.; Nocerino, J. Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemom. Intell. Lab. Syst. 2002, 60, 69–86. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Ho, Y.s.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1998, 34, 451–465. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Pazos, M.; Sanroman, M.A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresour. Technol. 2017, 246, 176–192. [Google Scholar] [CrossRef]
- Coleman, B.S.l.; Easton, Z.M.; Bock, E.M. Biochar fails to enhance nutrient removal in woodchips bioreactor columns following saturation. J. Environ. Manag. 2019, 232, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Pluer, W.T.; Geohring, L.D.; Steenhuis, T.S.; Walter, T.M. Controls influencing treatment of excess agricultural nitrate with denitrifying bioreactors. J. Environ. Qual. 2016, 45, 772–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.Y.; Xue, P.D.; Cheng, X.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residues at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Dong, Y.H.; Wang, H.Y.; Liu, Y. Ammonium adsorption from aqueous solutions by strawberry leaf powder: Equilibrium, kinetics and effects of coexisting ions. Desalination 2010, 263, 70–75. [Google Scholar] [CrossRef]
- Wang, Z.H.; Guo, H.Y.; Shen, F.; Yang, G.; Zhang, Y.Z.; Zeng, Y.M.; Wang, L.L.; Xiao, H.; Deng, S.H. Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH+4), nitrate (NO−3), and phosphate (PO3-4). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kirui, W.K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Zhao, H.; Xue, Y.; Long, L.; Hu, X. Adsorption of nitrate onto biochar derived from agricultural residuals. Water Sci Technol. 2018, 77, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Ozacar, M.; Sengil, I.A. Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazard. Mater. 2003, 98, 211–224. [Google Scholar] [CrossRef]
- Kumar, K.V. Optimum sorption isotherm by linear and nonlinear methods for malachite green onto lemon peel. Dyes Pigment. 2007, 74, 595–597. [Google Scholar] [CrossRef]
- Lima, E.C.; Adebayo, M.A. Carbon nanomaterials as adsorbents for environmental and biological applications. Carbon Nanostruct. 2015, 33–69. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag. Res. 2016, 34, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Manzatu, C.; Maicaneanu, A.; Indolean, C.; Barbu Tudoran, L.; Majdik, C. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arab. J. Chem. 2017, 10, 3569–3579. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.N.; You, S.J.; Chao, H.P. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J. Environ. Manag. 2017, 188, 322–336. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Sheikholeslami, M.; Ghasemian, M.; Ganji, D.D. Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model. Powder Technol. 2018, 324, 36–47. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D.D. Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM. Indian J. Phys. 2018, 92, 205–214. [Google Scholar] [CrossRef]
- Liljaniemi, P.; Vuori, K.M.; Tossavainen, T.; Kotanen, J.; Haapanen, M.; Lepistö, A.; Kenttämies, K. Effectiveness of constructed overland flow areas in decreasing diffuse pollution from forest drainages. Environ. Manag. 2003, 32, 602–613. [Google Scholar] [CrossRef]
- Nieminen, M.; Ahti, E.; Nousiainen, H.; Joensuu, S.; Vuollekoski, M. Does the use of riparian buffer zones in forest drainage sites to reduce the transport of solids simultaneously increase the export of solutes? Boreal Environ. Res. 2005, 10, 191–201. [Google Scholar]
- Eskelinen, R.; Ronkanen, A.K.; Marttila, H.; Kløve, B. Purification efficiency of a peatland-based treatment wetland during snow melt and runoff events. Ecol. Eng. 2015, 84, 169–179. [Google Scholar] [CrossRef]
- Joensuu, S.; Ahti, E.; Vuollekoski, M. The effects of peatland forest ditch maintenance on suspended solids in runoff. Boreal Environ. Res. 1999, 4, 343–355. [Google Scholar]
- Sallantaus, T.; Vasander, H.; Laine, J. Metsätalouden vesistöhaittojen torjuminen ojitetuista soista muodostettujen puskurivyöhykkeiden avulla [Prevention of detrimental impacts of forestry operations on water bodies using buffer zones created from drained peatlands]. Suo 1998, 49, 125–133, (In Finnish with English Summary). [Google Scholar]
- Laurén, A.; Koivusalo, H.; Ahtikoski, A.; Kokkonen, T.; Finér, L. Water protection and buffer zones: How much does it cost to reduce nitrogen load in a forest cutting? Scand. J. For. Res. 2007, 22, 537–544. [Google Scholar] [CrossRef]
- Jacks, G.; Norrström, A.C. Hydrochemistry and hydrology of forest riparian wetlands. For. Ecol. Manag. 2004, 196, 187–197. [Google Scholar] [CrossRef]
- Laurén, A.; Finér, L.; Koivusalo, H.; Kokkonen, T.; Karvonen, T.; Kellomäki, S.; Mannerkoski, H.; Ahtiainen, M. Water and nitrogen processes along a typical water flowpath and streamwater exports from a forested catchment and changes after clear- cutting: A modelling study. Hydrol. Earth Syst. Sci. 2005, 9, 657–674. [Google Scholar] [CrossRef]
- Väänänen, R.; Nieminen, M.; Vuollekoski, M.; Nousiainen, H.; Sallantaus, T.; Tuittila, E.S.; Ilvesniemi, H. Retention of phosphorus in peatland buffer zones at six forested catchments in southern Finland. Silva Fennica 2008, 42. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, T. Export of organic matter, sulphate and base cations from boreal headwater catchments downstream to the coast: Impacts of land use and climate. Monogr. Boreal Environ. Res. 2010, 36, 49. [Google Scholar]
- Palviainen, M.; Lehtoranta, J.; Ekholm, P.; Ruoho-Airola, T.; Kortelainen, P. Land Cover Controls the Export of Terminal Electron Acceptors from Boreal Catchments. Ecosystems 2015, 18, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Glob. Chang. Biol. Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd. ed; Routledge: London, UK, 2015; p. 944. [Google Scholar]
- Thomas, S.C.; Gale, N. Biochar and forest restoration: A review and meta-analysis of tree growth responses. New For. 2015, 46, 931–946. [Google Scholar] [CrossRef]
Biochar | Norway Spruce |
---|---|
Pyrolysis temperature (°C) | 600 |
pH (1:2.5 v:v biochar/water solution) | 9.75 (0.02) |
Electric conductivity (µS cm−1) (1:2.5 v:v biochar/water solution) | 163 (3) |
Specific surface area (m2 g−1) | 320 (49) |
Dry matter (%) (105 °C, 48 h | 72.69 (2.74) |
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 7.24 | Mg (mg L−1) | 1.208 |
[H+] | Na (mg L−1) | 1.984 | |
EC | 168 | P (mg L−1) | 0.026 |
TOC (mg L−1) | 0.0319 | Pb (mg L−1) | 0.225 |
TN (mg L−1) | 0.828 | S (mg L−1) | 3.271 |
NH4+-N (mg L−1) | 0.066 | Si (mg L−1) | 7.210 |
NO3−-N (mg L−1) | 0.251 | Zn (mg L−1) | 0.247 |
Al (mg L−1) | 0.313 | K (mg L−1) | 3.668 |
Ca (mg L−1) | 7.215 | Fe (mg L−1) | 0.406 |
Mn (mg L−1) | 0.087 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakaei Lafdani, E.; Saarela, T.; Laurén, A.; Pumpanen, J.; Palviainen, M. Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment. Water 2020, 12, 478. https://doi.org/10.3390/w12020478
Kakaei Lafdani E, Saarela T, Laurén A, Pumpanen J, Palviainen M. Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment. Water. 2020; 12(2):478. https://doi.org/10.3390/w12020478
Chicago/Turabian StyleKakaei Lafdani, Elham, Taija Saarela, Ari Laurén, Jukka Pumpanen, and Marjo Palviainen. 2020. "Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment" Water 12, no. 2: 478. https://doi.org/10.3390/w12020478
APA StyleKakaei Lafdani, E., Saarela, T., Laurén, A., Pumpanen, J., & Palviainen, M. (2020). Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment. Water, 12(2), 478. https://doi.org/10.3390/w12020478