Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimating Nutrient Water Quality Threshold Concentrations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bricker, S.; Longstaff, B.; Dennison, W.; Jones, A.; Boicourt, K.; Wicks, C.; Woerner, J. Effects of nutrient enrichment in the Nation’s estuaries—A decade of change. In NOAA Coastal Ocean Program Decision Analysis Series No. 26; National Center for Coastal Ocean Science: Silver Spring, MD, USA, 2007. [Google Scholar]
- Driscoll, C.T.; Whitall, D.; Aber, J.D.; Boyer, E.W.; Castro, M.S.; Cronan, C.S.; Goodale, C.L.; Groffman, P.M.; Hopkinson, C.S.; Lambert, K.; et al. Nitrogen pollution: Sources and consequences in the U.S. Northeast. Environ. Sci. Policy Sustain. Dev. 2003, 45, 8–22. [Google Scholar] [CrossRef]
- US Congress. Clean Water Act, 1972, 33 USC § 1251 et seq.; 40 CFR §§ 104.1. Available online: https://www.epa.gov/laws-regulations/summary-clean-water-act (accessed on 15 December 2020).
- PADEP. Pennsylvania Department of Environmental Protection, 2018 Pennsylvania integrated water quality monitoring and assessment report. Pennsylvania Department of Environmental Protection Clean Water Act, Section 305(b) Report and 303(d) List. 2018. Available online: https://www.depgis.state.pa.us/2018_integrated_report/index.html (accessed on 15 December 2020).
- Smith, R.A.; Alexander, R.B.; Schwarz, G.E. Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environ. Sci. Technol. 2003, 37, 3039–3047. [Google Scholar] [CrossRef] [Green Version]
- PADER. Clean Streams Law, PL 1987, Act 394 of 1937, as amended (35 PS §§ 691.1 et seq.). 1937. Available online: https://pennstatelaw.psu.edu/_file/aglaw/Marcellus_Shale/Clean_Streams_Law_Update.pdf (accessed on 15 December 2020).
- USEPA. Clean Water Act Section 303(d): Impaired waters and total maximum daily loads (TMDLs). 2019. Available online: https://www.epa.gov/tmdl (accessed on 15 December 2020).
- Sullivan, T.; Driscoll, C.T.; Beier, C.M.; Burtraw, D.; Fernandez, I.J.; Galloway, J.N.; Gay, D.A.; Goodale, C.L.; Likens, G.E.; Lovett, G.M.; et al. Air pollution success stories in the United States: The value of long-term observations. Environ. Sci. Policy 2018, 84, 69–73. [Google Scholar] [CrossRef]
- USEPA. 2019 Power Sector Programs Progress Report; US Environmental Protection Agency, Clean Air Markets Division, Office of Air and Radiation: Washington, DC, USA, 2019; p. 63.
- PADEP. Agricultural Compliance: Chesapeake Bay Agricultural Inspections. 2018. Available online: https://www.dep.pa.gov/Business/Water/CleanWater/AgriculturalOperations/Pages/Agricultural-Compliance.aspx (accessed on 15 December 2020).
- USEPA. Numeric Nutrient Water Quality Criteria; US Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/nutrient-policy-data/technical-support-numeric-nutrient-water-quality-criteria-development (accessed on 15 December 2020).
- USEPA. State Progress toward Developing Numeric Nutrient Water Quality Criteria for Nitrogen and Phosphorus; US Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/nutrient-policy-data/state-progress-toward-developing-numeric-nutrient-water-quality-criteria (accessed on 15 December 2020).
- USEPA. Nutrient Criteria Technical Guidance Manual: Rivers and Streams; EPA-822-B-00-002; US Environmental Protection Agency: Washington, DC, USA, 2000; p. 253. Available online: https://www.epa.gov/nutrient-policy-data/nutrient-criteria-technical-guidance-manuals (accessed on 15 December 2020).
- USEPA. Ambient Water Quality Criteria Recommendations; EPA 822-B-00-019; US Environmental Protection Agency: Washington, DC, USA, 2000; p. 108. Available online: https://www.epa.gov/sites/production/files/documents/rivers9.pdf (accessed on 15 December 2020).
- USEPA. Ambient Water Quality Criteria Recommendation: Formation Supporting the Development of State and Tribal Nutrient Criteria; Rivers and Streams in Nutrient Ecoregion VII; EPA 822-B-01-015; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 2001. Available online: https://www.epa.gov/sites/production/files/documents/rivers8.pdf (accessed on 15 December 2020).
- USEPA. Ecoregional Nutrient Criteria, Criteria Documents or Rivers & Streams (Web Site with a Document for Each Ecoregion of the US); US Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/nutrient-policy-data/ecoregional-nutrient-criteria-rivers-and-streams (accessed on 15 December 2020).
- Evans-White, M.A.; Haggard, B.E.; Scott, J.T. A Review of Stream Nutrient Criteria Development in the United States. J. Environ. Qual. 2013, 42, 1002–1014. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Rohm, C.M.; Omernik, J.M.; Woods, A.J.; Stoddard, J.L. Regional characteristics of nutrient concentrations in streams and their application to nutrient criteria development. J. Am. Water Resour. Assoc. 2002, 38, 213–239. [Google Scholar] [CrossRef]
- Clune, J.W.; Crawford, J.K.; Chappell, W.T.; Boyer, E.W. Differential effects of land use on nutrient concentrations in streams of Pennsylvania. Environ. Res. Commun. 2020, 2, 115003. [Google Scholar] [CrossRef]
- USDA. Summary Report: 2015 National Resources Inventory; Natural Resources Conservation Service: Washington, DC, USA; Center for Survey Statistics and Methodology, Iowa State University: Ames, IA, USA, 2018.
- NWQMC. National Water Quality Monitoring Council, Water Quality Portal (WQP). 2019. Available online: https://www.waterqualitydata.us/ (accessed on 15 December 2020).
- Oelsner, G.P.; Sprague, L.A.; Murphy, J.C.; Zuellig, R.E.; Johnson, H.M.; Ryberg, K.R.; Falcone, J.A.; Stets, E.G.; Vecchia, A.V.; Riskin, M.L.; et al. Water-Quality Trends in the Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results; Version 2.0; Scientific Investigations Report 2017-5006; US Geological Survey: Reston, VA, USA, 2017; p. 157. [CrossRef] [Green Version]
- Ator, S.W.; Denver, J.M. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, Northern Atlantic Coastal Plain, United States 1. J. Am. Water Resour. Assoc. 2012, 48, 1075–1090. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Larsen, D.P.; Hawkins, C.P.; Johnson, R.K.; Norris, R.H. Setting expectations for the ecological condition of streams: The concept of reference condition. Ecol. Appl. 2006, 16, 1267–1276. [Google Scholar] [CrossRef]
- Palmstrom, N. Development of Regional nutrient criteria and implications for states and the regulated community. Lake Reserv. Manag. 2005, 21, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.M.; Graczyk, D.J.; Garrison, P.J.; Wang, L.; Laliberte, G.; Bannerman, R. Nutrient Concentrations and Their Relations to the Biotic Integrity of Wadeable Streams in Wisconsin; Professional Paper 1722; US Geological Survey: Reston, VA, USA, 2006; p. 156. [CrossRef]
- Herlihy, A.T.; Sifneos, J.C. Developing nutrient criteria and classification schemes for wadeable streams in the conterminous US. J. N. Am. Benthol. Soc. 2008, 27, 932–948. [Google Scholar] [CrossRef]
- Longing, S.D.; Haggard, B.E. Distributions of median nutrient and chlorophyll concentrations across the Red River basin, USA. J. Environ. Qual. 2010, 39, 1966–1974. [Google Scholar] [CrossRef] [Green Version]
- Sheeder, S.A.; Evans, B.M. Estimating nutrient and sediment threshold criteria for biological impairment in Pennsylvania watersheds. J. Am. Water Resour. Assoc. 2004, 40, 881–888. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Jones, K.B. Evaluating the relative roles of ecological regions and land-cover composition for guiding establishment of nutrient criteria. Landsc. Ecol. 2005, 20, 791–798. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in phosphorus and nitrogen delivery to The Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Ator, S.W. Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment loads in streams of the Northeastern United States. In Scientific Investigations Report 2019–5118; U.S. Geological Survey: Reston, VA, USA, 2019; p. 57. [Google Scholar] [CrossRef]
- Saad, D.A.; Schwarz, G.E.; Robertson, D.M.; Booth, N.L. A multi-agency nutrient dataset used to estimate loads, improve monitoring design, and calibrate regional nutrient SPARROW Models1. J. Am. Water Resour. Assoc. 2011, 47, 933–949. [Google Scholar] [CrossRef] [Green Version]
- McGarrell, C. Eutrophication cause determination method for small streams. In Assessment Methodology for Rivers and Streams; Pennsylvania Department of Environmental Protection, Bureau of Clean Water: Harrisburg, PA, USA, 2018; pp. 6–11, 6–21. [Google Scholar]
- Sprague, L.A.; Oelsner, G.P.; Argue, D.M. Challenges with secondary use of multi-source water-quality data in the United States. Water Res. 2017, 110, 252–261. [Google Scholar] [CrossRef]
Total Nitrogen | Total Phosphorus | |||||
---|---|---|---|---|---|---|
N | 25th | 75th | N | 25th | 75th | |
Statewide | 13861 | 0.47 | 1.90 | 13822 | 0.012 | 0.055 |
Ecoregion | ||||||
VII | 1788 | 0.47 | 1.12 | 1893 | 0.019 | 0.070 |
VIII | 2627 | 0.27 | 0.53 | 2722 | 0.010 | 0.020 |
IX | 2054 | 2.30 | 5.90 | 2115 | 0.035 | 0.147 |
XI | 7198 | 0.58 | 1.67 | 7005 | 0.012 | 0.045 |
XIV | 194 | 1.26 | 2.63 | 87 | 0.053 | 0.139 |
Physiography | ||||||
Piedmont | 1961 | 2.20 | 6.08 | 2022 | 0.033 | 0.135 |
Atlantic Coastal Plain | 287 | 1.61 | 3.40 | 180 | 0.082 | 0.216 |
New England | 24 | 1.30 | 1.53 | 24 | 0.015 | 0.028 |
Ridge and Valley | 4258 | 0.65 | 2.20 | 4182 | 0.015 | 0.054 |
Central Lowlands | 102 | 0.60 | 1.06 | 100 | 0.011 | 0.042 |
Appalachian Plateaus | 7229 | 0.36 | 0.91 | 7314 | 0.010 | 0.035 |
Geology | ||||||
Carbonate | 1478 | 2.29 | 6.99 | 1435 | 0.022 | 0.080 |
Crystalline | 657 | 3.06 | 5.10 | 708 | 0.020 | 0.086 |
Siliciclastic | 11094 | 0.41 | 1.18 | 11105 | 0.011 | 0.045 |
Mixed | 632 | 1.90 | 3.64 | 574 | 0.046 | 0.190 |
Land Use | ||||||
Agricultural | 1088 | 2.89 | 6.68 | 1185 | 0.023 | 0.095 |
Developed | 502 | 1.70 | 4.02 | 474 | 0.022 | 0.220 |
Mixed | 8916 | 0.63 | 1.90 | 8713 | 0.017 | 0.065 |
Undeveloped | 3355 | 0.28 | 0.59 | 3450 | 0.010 | 0.019 |
Total Nitrogen (mg/L) | Aggregate Nutrient Ecoregion | ||||
---|---|---|---|---|---|
VII | VIII | IX | XI | XIV | |
This study (state specific data) | 0.47 | 0.27 | 2.30 | 0.58 | 1.26 |
Palmstrom, 2005 [26] | 0.48 | 0.29 | 2.01 | 0.29 | 1.85 |
Robertson et al., 2006 [27] | 1.56 | 0.40 | -- | -- | -- |
Herlihy and Sifneos, 2008 [28] | 0.58 | 0.27 | 0.33 | 0.16 | 0.62 |
Longing and Haggard, 2010 [29] | -- | -- | 0.53 | 0.21 | -- |
USEPA, 2020c [16] | 0.54 | 0.38 | 0.69 | 0.31 | 0.71 |
Total Phosphorus (µg/L) | Aggregate Nutrient Ecoregion | ||||
VII | VIII | IX | XI | XIV | |
This study (state specific data) | 19 | 10 | 35 | 12 | 53 |
Palmstrom, 2005 [26] | 20 | 16 | 42 | 12 | 82 |
Robertson et al., 2006 [27] | 40 | 10 | 90 | 20 | -- |
Herlihy and Sifneos, 2008 [28] | 17 | 7 | 20 | 4 | 23 |
Longing and Haggard, 2010 [29] | -- | -- | 60 | 20 | -- |
USEPA, 2020c [16] | 33 | 10 | 37 | 10 | 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clune, J.W.; Crawford, J.K.; Boyer, E.W. Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA. Water 2020, 12, 3550. https://doi.org/10.3390/w12123550
Clune JW, Crawford JK, Boyer EW. Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA. Water. 2020; 12(12):3550. https://doi.org/10.3390/w12123550
Chicago/Turabian StyleClune, John W., J. Kent Crawford, and Elizabeth W. Boyer. 2020. "Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA" Water 12, no. 12: 3550. https://doi.org/10.3390/w12123550
APA StyleClune, J. W., Crawford, J. K., & Boyer, E. W. (2020). Nitrogen and Phosphorus Concentration Thresholds toward Establishing Water Quality Criteria for Pennsylvania, USA. Water, 12(12), 3550. https://doi.org/10.3390/w12123550