Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Experimental Design
2.3. Image Analysis
2.4. Spatial Point Pattern Analysis
3. Results and Discussion
3.1. Quantities and Locations of Preferential Flow Paths Under Different Infiltrations
3.2. Spatial Distribution Patterns of Preferential Flow Paths in Different Infiltrations
3.3. Spatial Association of Preferential Flow Paths Under Different Infiltrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clothier, B.E.; Green, S.R.; Deurer, M. Preferential flow and transport in soil: progress and prognosis. Eur. J. Soil Sci. 2008, 59, 2–13. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Nieber, J.L.; Sidle, R.C. How do disconnected macropores in sloping soils facilitate preferential flow? Hydrol. Process. 2010, 24, 1582–1594. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Zhou, H.; Zhao, Q.G.; Lin, H.; Peng, X. Characteristics of cracks in two paddy soils and their impacts on preferential flow. Geoderma 2014, 228–229, 114–121. [Google Scholar] [CrossRef]
- Zhou, B.B.; Li, Y.; Wang, Q.J.; Jiang, Y.L.; Li, S. Preferential water and solute transport through sandy soil containing artificial macropores. Env. Earth Sci. 2013, 70, 2371–2379. [Google Scholar] [CrossRef]
- Wienhöfer, J.; Zehe, E. Predicting subsurface stormflow response of a forested hillslope—The role of connected flow paths. Hydrol. Earth Syst. Sci. 2014, 18, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cheng, J.; Zhang, H. Application of landscape pattern analysis to quantitatively evaluate the spatial structure characteristics of preferential flow paths in farmland. Appl. Eng. Agric. 2016, 32, 203–215. [Google Scholar] [CrossRef]
- Lu, W.; Cheng, J.; Wang, W.; Zhang, H.; Zhou, H. Application of the method of spatial point pattern analysis to the horizontal spatial distribution of preferential flow paths. For. Chron. 2015, 91, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Schwen, A.; Bodner, G.; Scholl, P.; Buchan, G.D.; Loiskandl, W. Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Till. Res. 2011, 113, 89–98. [Google Scholar] [CrossRef]
- Sander, T.; Gerke, H.H. Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone J. 2007, 6, 105. [Google Scholar] [CrossRef]
- Naveed, M.; Moldrup, P.; Arthur, E.; Wildenschild, D.; Eden, M.; Lamandé, M.; Vogel, H.J.R.; De Jonge, L.W. Revealing soil structure and functional macroporosity along a clay gradient using X-ray computed tomography. Soil Sci. Soc. Am. J. 2013, 77, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Abou Najm, M.R.; Jabro, J.D.; Iversen, W.M.; Mohtar, R.H.; Evans, R.G. New method for the characterization of three-dimensional preferential flow paths in the field. Water Resour. Res. 2010, 46, w02503. [Google Scholar] [CrossRef]
- Larsbo, M.; Koestel, J.; Jarvis, N. Relations between macropore network characteristics and the degree of preferential solute transport. Hydrol. Earth Syst. Sci. 2014, 18, 5255–5269. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhang, H.; Wang, W.; Zhang, Y.; Chen, Y. Changes in preferential flow path distribution and its affecting factors in southwest China. Soil Sci. 2011, 176, 652–660. [Google Scholar] [CrossRef]
- Hardie, M.A.; Cotching, W.E.; Doyle, R.B.; Holz, G.; Lisson, S.; Mattern, K. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil. J. Hydrol. 2011, 398, 191–201. [Google Scholar] [CrossRef]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Yang, Y.; Liu, M.; Hu, W.; Zhang, D. Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances. Soil Res. 2019, 57, 601–614. [Google Scholar] [CrossRef]
- Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Cheng, J.; Sun, L.; Zhang, X.; Zhang, H. Effect of antecedent soil water on preferential flow in four soybean plots in southwestern China. Soil Sci. 2017, 182, 1. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Lin, W.; Zhang, M.; Wang, G.; Zhang, F. Quantifying the preferential flow by dye tracer in the North China Plain. J. Earth Sci. 2014, 26, 435–444. [Google Scholar] [CrossRef]
- Sheng, F.; Liu, H.; Wang, K.; Zhang, R.; Tang, Z. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. J. Hydrol. 2014, 508, 137–146. [Google Scholar] [CrossRef]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–229. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: a laboratory study of slope and rainfall intensity. Earth Surf. Proc. Land 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Gardner, C.B.; Litt, G.F.; Lyons, W.B.; Ogden, F.L. Evidence for the activation of shallow preferential flow paths in a tropical panama watershed using germanium and silicon. Water Resour. Res. 2017, 53, 8533–8553. [Google Scholar] [CrossRef]
- Iversen, B.V.; Lamandé, M.; Torp, B.S.; Greve, M.H.; Heckrath, G. Macropores and macropore transport. Soil Sci. 2012, 177, 535–542. [Google Scholar] [CrossRef]
- Katuwal, S.; Norgaard, T.; Moldrup, P.; Lamandé, M.; Wildenschild, D.; de Jonge, L.W. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma 2015, 237–238, 9–20. [Google Scholar] [CrossRef]
- Murielle, G.; Sidle, R.C.; Alexia, S. The influence of plant root systems on subsurface flow: Implications for slope stability. BioScience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Colloff, M.J.; Pullen, K.R.; Cunningham, S.A. Restoration of an ecosystem function to revegetation communities: The role of invertebrate macropores in enhancing soil water infiltration. Restor. Ecol. 2010, 18, 65–72. [Google Scholar] [CrossRef]
- Pot, V.; Simunek, J.; Benoit, P.; Coquet, Y.; Yra, A.; Martinez-Cordon, M.J. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. J. Contam. Hydrol. 2005, 81, 63–88. [Google Scholar] [CrossRef]
- El Kateb, H.; Zhang, H.; Zhang, P.; Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena 2013, 105, 1–10. [Google Scholar] [CrossRef]
Plot | Spray Volume (L) | Spray Rate (mm h−1) | Spray Duration (h) |
---|---|---|---|
G20 | 7.2 | 6.35 | 3.15 |
G40 | 14.4 | 11.98 | 3.34 |
G60 | 21.6 | 24.19 | 2.48 |
Soil Depth (cm) | Moisture Content (%) | Bulk Density (g cm−3) | Total Porosity (%) | Sand Content (%) | Silt Content (%) | Clay Content (%) | pH | Organic Matter Content (g kg−1) |
---|---|---|---|---|---|---|---|---|
0–10 | 42.43 ± 2.79 | 1.00 ± 0.07 | 56.67 ± 3.13 | 69.22 ± 7.21 | 27.19 ± 6.00 | 3.58 ± 0.21 | 4.34 ± 0.05 | 6.47 ± 0.21 |
10–20 | 31.71 ± 1.47 | 1.09 ± 0.06 | 49.76 ± 3.07 | 61.59 ± 3.72 | 32.39 ± 3.50 | 6.02 ± 0.23 | 4.40 ± 0.06 | 3.45 ± 0.17 |
20–30 | 29.44 ± 0.36 | 1.11 ± 0.08 | 47.69 ± 1.13 | 54.34 ± 5.66 | 37.79 ± 4.08 | 7.87 ± 1.96 | 4.41 ± 0.04 | 3.38 ± 0.04 |
30–40 | 30.99 ± 1.10 | 1.11 ± 0.08 | 50.27 ± 2.30 | 48.43 ± 4.81 | 44.58 ± 4.20 | 6.99 ± 0.65 | 4.48 ± 0.08 | 3.37 ± 0.11 |
40–50 | 35.82 ± 2.51 | 1.12 ± 0.04 | 51.76 ± 0.89 | 48.83 ± 3.44 | 42.14 ± 2.52 | 9.03 ± 1.03 | 4.39 ± 0.02 | 2.77 ± 0.11 |
50–60 | 34.88 ± 3.14 | 1.19 ± 0.05 | 49.72 ± 3.05 | 41.41 ± 2.46 | 47.84 ± 2.49 | 10.75 ± 0.42 | 4.43 ± 0.07 | 1.75 ± 0.13 |
Soil Depth (cm) | Root Diameter | ||||
---|---|---|---|---|---|
<1 mm | 1–3 mm | 3–5 mm | 5–10 mm | >10 mm | |
0–5 | 907.33 ± 54.02 | 166.93 ± 49.83 | 186.93 ± 121.08 | 38 ± 27.94 | 4 ± 3.27 |
5–10 | 179.87 ± 50.43 | 25.33 ± 22.31 | 3.87 ± 5.47 | 12 ± 8.64 | 2.83 ± 4 |
10–15 | 94.56 ± 59.12 | 35.12 ± 21.61 | 1.39 ± 1.96 | 3.97 ± 5.62 | 0 |
15–20 | 100.88 ± 26.81 | 0 | 6.24 ± 6.54 | 0 | 0 |
20–25 | 48.19 ± 13.67 | 6.21 ± 7.79 | 0 | 1.04 ± 1.47 | 0 |
25–30 | 41.2 ± 9.41 | 3.73 ± 5.28 | 0 | 1.33 ± 1.89 | 0 |
30–35 | 57.65 ± 60.58 | 32.8 ± 41.4 | 2.72 ± 2.01 | 0.69 ± 0.98 | 0 |
35–40 | 124.45 ± 97.23 | 41.87 ± 32.77 | 23.81 ± 26.16 | 13.6 ± 10.79 | 0 |
40–45 | 40.29 ± 20.69 | 22.32 ± 20.97 | 10.37 ± 11 | 3.89 ± 2.76 | 0.72 ± 1.02 |
45–50 | 14.4 ± 10.37 | 1.07 ± 1.51 | 0 | 5.6 ± 2.26 | 0.69 ± 0.49 |
50–55 | 8.77 ± 9.22 | 1.63 ± 1.34 | 0 | 3.41 ± 1.28 | 0 |
Total root length density | 1617.59 | 337.01 | 235.33 | 83.53 | 8.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yao, J.; Cheng, J. Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China. Water 2020, 12, 3489. https://doi.org/10.3390/w12123489
Li M, Yao J, Cheng J. Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China. Water. 2020; 12(12):3489. https://doi.org/10.3390/w12123489
Chicago/Turabian StyleLi, Mingfeng, Jingjing Yao, and Jinhua Cheng. 2020. "Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China" Water 12, no. 12: 3489. https://doi.org/10.3390/w12123489
APA StyleLi, M., Yao, J., & Cheng, J. (2020). Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China. Water, 12(12), 3489. https://doi.org/10.3390/w12123489