Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cases
2.2. Quantitative Economic Analysis
2.2.1. Economic Cost
2.2.2. Environmental Cost
2.2.3. Economic Benefit
2.2.4. Environmental Benefit
2.3. Sensitivity Analysis
2.4. Qualitative Economic Analysis
3. Results and Discussion
3.1. Quantitative Economic Analysis
3.2. Sensitivity Analysis
3.3. Qualitative Economic Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L.; Huff, A.; Allouche, J. The new politics and geographies of scarcity. Geoforum 2019, 101, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E.; Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Sánchez, R.; Lozano-Parra, J.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse. Water 2020, 12, 2915. [Google Scholar] [CrossRef]
- Lajaunie, M.-L.; Scheierling, S.; Zuleta, J.; Chinarro, L.; Vazquez, V. Chile-Diagnóstico de la Gestión de los Recursos Hídricos [Chile-Diagnosis of the Management of Water Resources, Authors Translation]; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. Ambio 2017, 46, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Gómez-González, S.; González, M.E.; Paula, S.; Díaz-Hormazábal, I.; Lara, A.; Delgado-Baquerizo, M. Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. For. Ecol. Manag. 2019, 433, 535–543. [Google Scholar] [CrossRef]
- Fernández, F.J.; Blanco, M.; Ponce, R.D.; Vásquez-Lavín, F.; Roco, L. Implications of climate change for semi-arid dualistic agriculture: A case study in Central Chile. Reg. Environ. Chang. 2019, 19, 89–100. [Google Scholar] [CrossRef]
- Furnaro, A. Hegemony and passivity in mining regions: Containing dissent in north-central Chile. Extr. Ind. Soc. 2019, 6, 215–222. [Google Scholar] [CrossRef]
- Fernandez, V. Copper mining in Chile and its regional employment linkages. Resour. Policy 2018. [Google Scholar] [CrossRef]
- MOP. Estimación de la Demanda Actual, Proyecciones Futuras y Caracterización de la Calidad de los Recursos Hídricos en Chile [Estimation of Current Demand, Future Projections and Characterization of the Quality of Water Resources in Chile, Authors Translation]; MOP: Santiago, Chile, 2017.
- Fundación Amulén. Pobres de Agua. Radiografía del Agua Rural de Chile: Visualización de un Problema Oculto [Poor of Water. Radiography of Rural Water in Chile: Visualization of a Hidden Problem, Authors Translation]; Fundación Amulén: Santiago, Chile, 2019. [Google Scholar]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; Acheampong, M.A.; deVries, N.K. Greywater Characteristics, Treatment Systems, Reuse Strategies and User Perception—A Review. Water. Air. Soil Pollut. 2018, 229, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Maimon, A.; Gross, A. Greywater: Limitations and perspective. Curr. Opin. Environ. Sci. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.K.; Ang, M. A review of greywater characteristics and treatment processes. Water Sci. Technol. 2013, 67, 1403–1424. [Google Scholar] [CrossRef]
- Diario Oficial de la República de Chile. Ley N° 21.075: Regula la Recolección, Reutilización y Disposición de Aguas Grises [Law N ° 21.075: Regulates the Collection, Reuse and Disposal of Gray Water, Authors Translation]; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2018. [Google Scholar]
- Instituto Nacional de Estadísticas. Síntesis de Resultados Censo 2017 [Summary of 2017 Census Results, Authors Translation]; INE: Santiago, Chile, 2018.
- Godfrey, S.; Labhasetwar, P.; Wate, S. Greywater reuse in residential schools in Madhya Pradesh, India-A case study of cost-benefit analysis. Resour. Conserv. Recycl. 2009, 53, 287–293. [Google Scholar] [CrossRef]
- Ministerio de Salud. Proyecto de Reglamento Sobre Condiciones Sanitarias Básicas para la Reutilización de Aguas Grises [Draft Regulation on Basic Sanitary Conditions for the Reuse of Graywater, Authors Translation]; Departamento de Salud Ambiental: Santiago, Chile, 2018.
- Aswath, D. Damodaran Online. Available online: http://pages.stern.nyu.edu/~adamodar/ (accessed on 15 October 2020).
- Lilford, E.; Maybee, B.; Packey, D. Cost of capital and discount rates in cash flow valuations for resources projects. Resour. Policy 2018, 59, 525–531. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Bjørner, T.B. Combining socio-acoustic and contingent valuation surveys to value noise reduction. Transp. Res. Part D Transp. Environ. 2004, 9, 341–356. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente (MMA). Decreto Supremo 38/11 “Norma de Emisión de Ruidos Generados por Fuentes que Indica” [Supreme Decree 38/11 Norm of Emission of Noise Generated by Sources that Indicates, Authors Translation]; MMA: Santiago, Chile, 2011.
- Martínez, C. Valoración Económica de Áreas Verdes Urbanas de uso Público en la Comuna de La Reina [Economic Valuation of Urban Green Areas for Public Use in the Commune of La Reina]. Master’s Thesis, Environmental Management and Planning, University of Chile, Santiago, Chile, 2004. [Google Scholar]
- Liang, X.; van Dijk, M.P. Financial and economic feasibility of decentralized wastewater reuse systems in Beijing. Water Sci. Technol. 2010, 61, 1965–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, R.; Donoso, G. Rural Water Management. In Global Issues in Water Policy; Springer: Berlin/Heidelberg, Germany, 2018; Volume 21, pp. 151–163. [Google Scholar]
- Donoso, G. Urban water pricing in Chile: Cost recovery, affordability, and water conservation. Wiley Interdiscip. Rev. Water 2017, 4, e1194. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Donoso, G. Water scarcity and affordability in urban water pricing: A case study of Chile. Util. Policy 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Friedler, E. The water saving potential and the socio-economic feasibility of greywater reuse within the urban sector—Israel as a case study. Int. J. Environ. Stud. 2008, 65, 57–69. [Google Scholar] [CrossRef]
- Benstoem, F.; Nahrstedt, A.; Boehler, M.; Knopp, G.; Montag, D.; Siegrist, H.; Pinnekamp, J. Performance of granular activated carbon to remove micropollutants from municipal wastewater—A meta-analysis of pilot- and large-scale studies. Chemosphere 2017, 185, 105–118. [Google Scholar] [CrossRef]
- Korotta-Gamage, S.M.; Sathasivan, A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process. Chemosphere 2017, 167, 120–138. [Google Scholar] [CrossRef]
- Zipf, M.S.; Pinheiro, I.G.; Conegero, M.G. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon. J. Environ. Manag. 2016, 176, 119–127. [Google Scholar] [CrossRef]
- Parry, T.R. Decentralization and privatization: Education policy in Chile. J. Public Policy 1997, 17, 107–133. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Balan, P.; Chong, M.N.; Poh, P.E. Life-cycle assessment and life-cycle cost analysis of decentralised rainwater harvesting, greywater recycling and hybrid rainwater-greywater systems. J. Clean. Prod. 2019, 229, 1211–1224. [Google Scholar] [CrossRef]
- Jabornig, S. Overview and feasibility of advanced grey water treatment systems for single households. Urban Water J. 2014, 11, 361–369. [Google Scholar] [CrossRef]
- WHO. Urban Planning, Environment and Health: From Evidence to Policy Action; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- (SIEDU), Sistema de Indicadores y Estándares del Desarrollo Urbano. Indicadores Urbanos [Urban Indicators, Authors Translation]. Available online: http://siedu.ine.cl/descargar/descarga.html (accessed on 19 October 2020).
- Valenzuela Díaz, L.M. Evaluación de un Ensayo de Riego y Fertilización de Quillay (Quillaja Saponaria Mol.), en la Comuna de San Pedro, Provincia de Melipilla, Región Metropolitana [Evaluation of a Test of Irrigation and Fertilization of Quillay (Quillaja Saponaria Mol.), In the Commune of San Pedro, Province of Melipilla, Metropolitan Region, Authors translation]. Undergraduate’ Thesis, Universidad de Chile, Santiago, Chile, 2007. [Google Scholar]
- Benedetti Ruiz, S.; Delard, R.; Roach Barrios, F.A. Quillay: Una Alternativa Multipropósito para la Zona Central Central [Quillay: A Multipurpose Alternative for the Central Area, Authors Translation]; INFOR: Santiago, Chile, 2000; ISBN 9567727376. [Google Scholar]
- Explorador Climático (CR)2. Centro de Ciencias del Clima y la Resilencia [Climate Explorer (CR)2. Climate and Resilience Sciences Center, Authors Translation]. Available online: http://explorador.cr2.cl/ (accessed on 20 June 2020).
- Gómez, F.; Montero, L.; De Vicente, V.; Sequi, A.; Castilla, N. Vegetation influences on the human thermal comfort in outdoor spaces: Criteria for urban planning. WIT Trans. Ecol. Environ. 2008, 117, 151–163. [Google Scholar]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing public squares with green infrastructure to optimize human thermal comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Adegun, O.B.; Balogun, A.A. The effect of vegetation on indoor and outdoor thermal comfort conditions: Evidence from a microscale study of two similar urban buildings in Akure, Nigeria. Indoor Built Environ. 2016, 25, 603–617. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar] [CrossRef]
- Teli, D.; Jentsch, M.F.; James, P.A.B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy Build. 2012, 53, 166–182. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Hansen, K.B. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health Place 2007, 13, 839–850. [Google Scholar] [CrossRef]
- Meron, N.; Meir, I.A. Building green schools in Israel. Costs, economic benefits and teacher satisfaction. Energy Build. 2017, 154, 12–18. [Google Scholar] [CrossRef]
- Vakalis, D.; Lepine, C.; MacLean, H.L.; Siegel, J.A. Can green schools influence academic performance? Crit. Rev. Environ. Sci. Technol. 2020, 1–43. [Google Scholar] [CrossRef]
- Scott, J.T.; Kilmer, R.P.; Wang, C.; Cook, J.R.; Haber, M.G. Natural Environments Near Schools: Potential Benefits for Socio-Emotional and Behavioral Development in Early Childhood. Am. J. Community Psychol. 2018, 62, 419–432. [Google Scholar] [CrossRef] [PubMed]
School | Number of Members | Water Supply | Pilot Treatment System | Permitted Use According to the Quality of the Treated Greywater |
---|---|---|---|---|
Alejandro Chelén | 420 | Sanitary company | 3 Filter sections in series: 2 Sections of activated carbon (~5 mm diameter and ~25 mm length) and 1 Section of zeolite (~5 mm diameter) | Irrigation of recreational areas and services * |
El Guindo | 121 | Rural potable water (APR) | 2 Sections of activated carbon (~5 mm diameter and ~25 mm length) | Irrigation of recreational areas and services * |
Pedro de Valdivia | 133 | 70% APR & 30% cistern truck | 2 Sections of activated carbon (~5 mm diameter and ~25 mm length) | Irrigation of recreational areas and services * |
Factor | Description |
---|---|
Economic cost | Initial investment (materials, equipment, labor, etc.) Operating, maintenance, and water quality control costs (change of filter materials, electricity, etc.) |
Environmental cost | Noise pollution |
Economic benefits | Water savings |
Variable | Range of Variation |
---|---|
Workforce | −20% to +20% |
Maintenance frequency | 0 to 4 |
Perimeter closure | −20% to +20% |
No. electric pumps | 0 to 2 |
Plumbing | −20% to +20% |
Treated greywater | −20% to +20% |
Discount rate (r) | 6% to 10% |
Willingness to pay | −20% to +20% |
Alejandro Chelén | El Guindo | Pedro de Valdivia | ||
---|---|---|---|---|
Economic cost | Capital costs: | |||
collecting tanks, | 215 | 215 | 215 | |
perimeter closure, | 1250 | 1000 | 1125 | |
plumbing, | 625 | 625 | 625 | |
filter material, | 178.20 | 156.26 | 156.25 | |
electric pumps, | 61.30 | 122.50 | 122.50 | |
water meter, | 35.63 | 35.63 | 35.63 | |
workforce | 3125 | 3125 | 3125 | |
Operating cost: | ||||
electricity | 112.24 | 224.48 | 224.48 | |
Maintenance cost: | ||||
filter material | 217.80 | 190.97 | 190.97 | |
Quality control cost: | 372.20 | 372.20 | 372.20 | |
Environmental cost | noise | 56.28 | 112.57 | 112.57 |
Economic benefit | Water savings | 400.11 | 54.88 | 86.55 |
Environmental benefit | Willingness to pay for green areas | 2161.82 | 622.81 | 684.58 |
Total (Benefit—Cost) | −3686.67 | –5501.90 | –5533.47 |
Alejandro Chelén | El Guindo | Pedro de Valdivia | |
---|---|---|---|
RB/C (ratio benefits/cost) | 0.410 | 0.110 | 0.122 |
Total Greywater Treated Per Day [L] | Irrigation Area (Quillay as Reference) [m2] | Green Areas/Person [m2/Person] | |
---|---|---|---|
Alejandro Chelén School | 873 (807–999) | 2619 (2421–2997) | 6.24 (5.76–7.14) |
El Guindo School | 229 (540–999) * | 687 (1620–2997) | 5.68 (13.39–24.77) |
Pedro de Valdivia School | 158 (850–999) | 474 (2550–2997) | 3.56 (19.17–22.53) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, C.; Sánchez, R.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water 2020, 12, 3468. https://doi.org/10.3390/w12123468
Rodríguez C, Sánchez R, Rebolledo N, Schneider N, Serrano J, Leiva E. Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water. 2020; 12(12):3468. https://doi.org/10.3390/w12123468
Chicago/Turabian StyleRodríguez, Carolina, Rafael Sánchez, Natalia Rebolledo, Nicolás Schneider, Jennyfer Serrano, and Eduardo Leiva. 2020. "Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile" Water 12, no. 12: 3468. https://doi.org/10.3390/w12123468
APA StyleRodríguez, C., Sánchez, R., Rebolledo, N., Schneider, N., Serrano, J., & Leiva, E. (2020). Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water, 12(12), 3468. https://doi.org/10.3390/w12123468