Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Estimation of Rainfall Erosivity
2.4. Annual Erosivity Density Ratio
2.5. Model Evaluation Rainfall Erosivity
3. Results
3.1. Rainfall Erosivity Under Baseline and Projected Climate
3.2. Rainfall Erosivity at the National Level
3.3. Annual Erosivity Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mamytov, A.M.; Roychenko, G.I. Soil Zoning of Kyrgyzstan; Izd-vo AN Kirg: Frunze, Kyrgyzstan, 1961. (In Russian) [Google Scholar]
- Khitrov, N.B.; Ivanov, A.L.; Zavalin, A.A.; Kuznetsov, M.S. Problems of Degradation, Protection and Ways of Recovery Productivity of Agricultural Land. Vestnik Orel GAU 2007, 6, 29–32. (In Russian) [Google Scholar]
- Oldeman, L. The global extent of soil degradation1. In Szabolcs I, Eds1 Soil Resilience and Sustainable Land Use1; Greenland, D.J., Ed.; CAB International: Wallingford, UK, 1994; pp. 99–1181. [Google Scholar]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Dobrovolsky, G.V. Degradation and Protection of Soils; Dorovolsky, G.V., Ed.; Moscow State University Publishing House: Moscow, Russia, 2002; p. 654. [Google Scholar]
- Oliveira, P.T.S.; Nearing, M.A.; Wendland, E. Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surf. Process. Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
- Almagro, A.; Oliveira, P.T.S.; Nearing, M.A.; Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 2017, 7, 8130. [Google Scholar] [CrossRef] [PubMed]
- Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 6. [Google Scholar] [CrossRef]
- Qushimov, B.; Ganiev, I.; Rustamova, I.; Haitov, B.; Islam, K. Land degradation by agricultural activities in Central Asia. In Climate Change and Terrestrial Carbon Sequestration in Central Asia; Taylor & Francis: London, UK, 2007; pp. 137–147. [Google Scholar]
- Duishonakunov, M.; Imbery, S.; Narama, C.; Mohanty, A.; King, L. Recent glacier changes and their impact on water resources in Chon and Kichi Naryn Catchments, Kyrgyz Republic. Water Sci. Technol. Water Supply 2014, 14, 444–452. [Google Scholar] [CrossRef]
- Aizen, V.B.; Kuzmichenok, V.A.; Surazakov, A.B.; Aizen, E.M. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Glob. Planet. Chang. 2007, 56, 328–340. [Google Scholar] [CrossRef]
- Kenzhebaev, R.; Barandun, M.; Kronenberg, M.; Chen, Y.; Usubaliev, R.; Hoelzle, M. Mass balance observations and reconstruction for Batysh Sook Glacier, Tien Shan, from 2004 to 2016. Cold Reg. Sci. Technol. 2017, 135, 76–89. [Google Scholar] [CrossRef]
- Chevallier, P.; Pouyaud, B.; Mojaïsky, M.; Bolgov, M.; Olsson, O.; Bauer, M.; Froebrich, J. River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate. Hydrol. Sci. J. 2014, 59, 1491–1506. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Issanova, G.; Jilili, R.; Abuduwaili, J.; Kaldybayev, A.; Saparov, G.; Yongxiao, G. Water availability and state of water resources within water-economic basins in Kazakhstan. Paddy Water Environ. 2018, 16, 183–191. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Li, L.; Egbinola, C.N.; Obarein, O.A.; Mupenzi, C.; Chen, D. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa. Catena 2019, 172, 324–334. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses-a guide to conservation planning. In Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997; Volume 703.
- Lai, C.; Chen, X.; Wang, Z.; Wu, X.; Zhao, S.; Wu, X.; Bai, W. Spatio-temporal variation in rainfall erosivity during 1960–2012 in the Pearl River Basin, China. Catena 2016, 137, 382–391. [Google Scholar] [CrossRef]
- Lee, J.-H.; Heo, J.-H. Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. J. Hydrol. 2011, 409, 30–48. [Google Scholar] [CrossRef]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef]
- Naipal, V.; Reick, C.H.; Pongratz, J.; Van Oost, K. Improving the global applicability of the RUSLE model-adjustment of the topographical and rainfall erosivity factors. Geosci. Model Dev. 2015, 8, 2893–2913. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, C.; Borrelli, P. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. J. Hydrol. 2017, 548, 251–262. [Google Scholar] [CrossRef]
- Plangoen, P.; Babel, M.S.; Clemente, R.S.; Shrestha, S.; Tripathi, N.K. Simulating the impact of future land use and climate change on soil erosion and deposition in the Mae Nam Nan sub-catchment, Thailand. Sustainability 2013, 5, 3244–3274. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, S. Simulating climate change impact on soil erosion using RUSLE model− A case study in a watershed of mid-Himalayan landscape. J. Earth Syst. Sci. 2017, 126, 43. [Google Scholar] [CrossRef]
- Campbell, J.L.; Driscoll, C.T.; Pourmokhtarian, A.; Hayhoe, K. Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plan. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. Int. Soil Water Conserv. Res. 2016, 4, 186–194. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y.; Rossel, R.A.V.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Immerzeel, W.; Pellicciotti, F.; Bierkens, M. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742–745. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Merz, B.; Frede, H.-G. Introduction to “water in Central Asia—Perspectives under global change”. Glob. Planet. Chang. 2013, 100, 1–152. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Alamanov, S.; Lelevkin, V.; Podrezov, O.; Podrezov, A. Climate Changes and Water Problems in Central Asia; UNEP and WWF: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Chen, X.; Zhou, Q. Ecological and Environmental Remote Sensing in Arid Zone–A Case Study of Central Asia; Science Press: Beijing, China, 2015. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Frankl, A.; De Maeyer, P. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. Int. J. Climatol. 2019, 39, 1571–1588. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2010. [Google Scholar]
- Arnoldus, H. Methodology Used to Determine the Maximum Potential Average Annual Soil Loss Due to Sheet and Rill Erosion in Morocco; FAO Soils Bulletins (FAO): Rome, Italy, 1977. [Google Scholar]
- Arnoldus, H. An approximation of the rainfall factor in the Universal Soil Loss Equation. In An Approximation of the Rainfall Factor in the Universal Soil Loss Equation; John Wiley and Sons Ltd.: Chichester, UK, 1980; pp. 127–132. [Google Scholar]
- Kinnell, P. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Williams, M.; Konovalov, V. Central Asia Temperature and Precipitation Data, 1879–2003; USA National Snow and Ice Data Center: Boulder, CO, USA, 2008.
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Hu, Z.; Zhou, Q.; Hu, Q. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901–2013. J. Geogr. Sci. 2018, 28, 1341–1368. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2018, 39, 1072–1091. [Google Scholar] [CrossRef]
- Mariotti, A. How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef]
- Liu, S.; Duan, A. Impacts of the global sea surface temperature anomaly on the evolution of circulation and precipitation in East Asia on a quasi-quadrennial cycle. Clim. Dyn. 2017, 51, 4077–4094. [Google Scholar] [CrossRef]
- Litschert, S.E.; Theobald, D.M.; Brown, T.C. Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion. Catena 2014, 118, 206–219. [Google Scholar] [CrossRef]
Model | Institute | Country | Resolution |
---|---|---|---|
BCCCSM-1.1 | Beijing Climate Center, Climate System Model 1.1 | China | ~2.8125° × 2.8125° |
IPSLCM5ALR | Institut Pierre Simon Laplace Model, New Atmospheric Physic at Low Resolution | France | 3.75° × ~1.9° |
MIROC-5 | Model for Interdisciplinary Research On Climate | Japan | 1.4° × 1.4° |
MPIESMLR | Max Plank Institute for Meteorology | Germany | 1.875° × ~1.9° |
Climate Models | Precipitation | Rainfall Erosivity (MJ mm ha−1 h−1 year−1) | Change (%) | Erosivity Density | Change (%) |
---|---|---|---|---|---|
Baseline | 253.57 | 402.07 | 0.0 | 1.38 | 0.0 |
2030s | |||||
BCCCSM1.1-2.6 | 263.5 | 430.01 | 6.95 | 1.41 | 2.2 |
BCCCSM1.1-8.5 | 267.12 | 437.07 | 8.7 | 1.42 | 2.9 |
IPSLCM5ALR-2.6 | 247.31 | 386.65 | −3.84 | 1.36 | −1.4 |
IPSLCM5ALR-8.5 | 246.48 | 386.37 | −3.9 | 1.35 | −2.2 |
MIROC5-2.6 | 266.4 | 439.64 | 9.34 | 1.42 | 2.9 |
MIROC5-8.5 | 283.19 | 481.98 | 19.87 | 1.47 | 6.5 |
MPIESMLR-2.6 | 254.36 | 404.09 | 0.5 | 1.38 | 0.0 |
MPIESMLR-8.5 | 263.94 | 430.14 | 6.98 | 1.41 | 2.2 |
Average | 261.54 | 424.49 | 5.58 | 1.4 | 1.6 |
2070s | |||||
BCCCSM1.1-2.6 | 273.95 | 450.35 | 12.01 | 1.45 | 5.1 |
BCC-CSM1.1-8.5 | 268.61 | 437.77 | 8.88 | 1.43 | 3.6 |
IPSLCM5ALR-2.6 | 248.82 | 391.22 | −2.7 | 1.36 | −1.4 |
IPSLCM5ALR-8.5 | 243.9 | 381.36 | −5.15 | 1.34 | −2.9 |
MIROC5-2.6 | 270.33 | 449.88 | 11.89 | 1.43 | 3.6 |
MIROC5-8.5 | 294.11 | 508.85 | 26.56 | 1.51 | 9.4 |
MPIESMLR-2.6 | 278.9 | 469.3 | 16.72 | 1.46 | 5.8 |
MPIESMLR-8.5 | 267.4 | 435.84 | 8.4 | 1.42 | 2.9 |
Average | 268.25 | 440.57 | 9.58 | 1.43 | 3.3 |
KGZ | KZT | TJK | TKM | UZB | ||
---|---|---|---|---|---|---|
Baseline (1961–1990) | 869.7 | 374.3 | 1447.7 | 188.4 | 282.1 | |
RCP2.6 (2030s) | BCCCSM-1.1 | 903.8 | 420.3 | 1395.9 | 167.7 | 258 |
Change, % | 6.3 | 11.6 | 0.4 | −10.1 | −8.1 | |
IPSLCM5ALR | 744.1 | 377.5 | 1290.8 | 164.7 | 240.5 | |
Change, % | −17.2 | −0.3 | −11 | −11.2 | −11.9 | |
MIROC5 | 1057 | 400.6 | 1697.1 | 196.9 | 295.6 | |
Change, % | 27.9 | 5.3 | 36.9 | 3.7 | 2.1 | |
MPIESMLR | 870.1 | 380.8 | 1388.3 | 191.2 | 272.5 | |
Change, % | 0.9 | 0.6 | −2.2 | 2.3 | -2.7 | |
RCP2.6 (2070s) | BCCCSM-1.1 | 910 | 436.2 | 1450.2 | 200.9 | 291.9 |
Change, % | 6.3 | 17.7 | 3.8 | 10.5 | 9 | |
IPSLCM5ALR | 769 | 375.1 | 1350.5 | 172.9 | 263.4 | |
Change, % | −14.5 | −1.5 | −8.2 | −7.1 | −7.7 | |
MIROC5 | 1062.6 | 416.8 | 1699.9 | 179.9 | 297 | |
Change, % | 28.8 | 9.8 | 34.3 | -4.7 | 2.4 | |
MPIESMLR | 1081.9 | 432.5 | 1702.5 | 216.9 | 329 | |
Change, % | 27 | 15.7 | 24.5 | 14.3 | 15.3 | |
RCP8.5 (2030s) | BCCCSM-1.1 | 909.6 | 430.9 | 1386.2 | 165 | 256.6 |
Change, % | 6.3 | 14.9 | −5.7 | −11.1 | −10 | |
IPSLCM5ALR | 736.4 | 380.2 | 1254.8 | 171 | 227.6 | |
Change, % | −17.4 | −1.6 | −15.4 | −7.3 | −17.7 | |
MIROC5 | 1216.8 | 435.9 | 1818.4 | 212 | 336.9 | |
Change, % | 49.7 | 17 | 51.3 | 13.5 | 19.4 | |
MPIESMLR | 1041.7 | 385.2 | 1664.4 | 202.8 | 320 | |
Change, % | 22 | 4.6 | 20.8 | 8.8 | 14.5 | |
RCP8.5 (2070s) | BCCCSM-1.1 | 794 | 456.8 | 1150.6 | 146.9 | 228.4 |
Change, % | −7.8 | 23.2 | −26.3 | −19 | −17.7 | |
IPSLCM5ALR | 581.3 | 400 | 1082 | 154.2 | 182.8 | |
Change, % | −35.5 | 1.5 | −26.2 | −16.7 | −28.2 | |
MIROC5 | 1224.1 | 473.1 | 1800.4 | 215.3 | 340 | |
Change, % | 50.1 | 27.3 | 56.3 | 19.6 | 24.1 | |
MPIESMLR | 988 | 409.6 | 1484.7 | 195.4 | 294.5 | |
Change, % | 15.7 | 11.1 | 9 | 7.6 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duulatov, E.; Chen, X.; Amanambu, A.C.; Ochege, F.U.; Orozbaev, R.; Issanova, G.; Omurakunova, G. Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models. Water 2019, 11, 897. https://doi.org/10.3390/w11050897
Duulatov E, Chen X, Amanambu AC, Ochege FU, Orozbaev R, Issanova G, Omurakunova G. Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models. Water. 2019; 11(5):897. https://doi.org/10.3390/w11050897
Chicago/Turabian StyleDuulatov, Eldiiar, Xi Chen, Amobichukwu C. Amanambu, Friday U. Ochege, Rustam Orozbaev, Gulnura Issanova, and Gulkaiyr Omurakunova. 2019. "Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models" Water 11, no. 5: 897. https://doi.org/10.3390/w11050897