Spatial and Temporal Changes in Infiltration and Aggregate Stability: A Case Study of a Subhumid Irrigated Cropland
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Measurements on Soil Porosity
2.3. Rainfall Simulation
2.4. Calculation of Hydrological Properties
2.5. Estimating Surface Roughness Changes
3. Results and Discussion
3.1. Results of Porosity Changes
3.2. Results of Infiltration Measurements
3.3. Changes in Surface Roughness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodrigo-Comino, J.; Neumann, M.; Remke, A.; Ries, J.B. Assessing environmental changes in abandoned German vineyards. Understanding key issues for restoration management plans. Hung. Geog. Bull. 2018, 67, 319–332. [Google Scholar] [CrossRef]
- Ward, P.R.; Roper, M.M.; Jongepier, R.; Micin, S.F. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil. Biologia 2015, 70, 1480–1484. [Google Scholar] [CrossRef]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Comino, J.R.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Gimenez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerda, A. The potential of straw mulch as a nature-based solution in olive groves treated with glyphosate. A biophysical and socio-economic assessment. Land Degrad. Dev. 2019, 1–13. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Szabó, J.A.; Tóth, A.; Zacháry, D.; Szalai, Z.; Kertész, Á.; Dyson, J. Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability 2017, 9, 1726. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R.; Kis, A. Projected changes of extreme precipitation using multi-model approach. Q. J. Hung. Meteorol. Serv. 2015, 119, 129–142. [Google Scholar]
- Diadin, D.; Vystavna, Y.; Vergeles, Y. Quantification of nitrate fluxes to groundwater and rivers from different land use types. Hung. Geog. Bull. 2018, 67, 333–341. [Google Scholar] [CrossRef]
- Czigány, Sz.; Pirkhoffer, E.; Geresdi, I. Impact of extreme rainfall and soil moisture on flash flood generation. Idojaras 2010, 114, 79–100. [Google Scholar]
- Pásztor, L.; Körösparti, J.; Bozán, C.; Laborczi, A.; Takács, K. Spatial risk assessment of hydrological extremities: Inland excess water hazard, Szabolcs- Szatmár-Bereg County, Hungary. J. Maps 2015, 11, 636–644. [Google Scholar] [CrossRef]
- Balázs, B.; Bíró, T.; Dyke, G.J.; Singh, S.K.; Szabó, Sz. Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrol. Sci. J. 2018, 63, 269–284. [Google Scholar] [CrossRef]
- Ben-Hur, H. Runoff, erosion, and polymer application in moving-sprinkler irrigation. Soil Sci. 1994, 158, 132–140. [Google Scholar] [CrossRef]
- Jirků, V.; Kodešová, R.; Nikodem, A.; Mühlhanselová, M.; Žigová, A. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 2013, 204–205, 43–58. [Google Scholar] [CrossRef]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Di Prima, S.; Bagarello, V.; Lassabatere, L.; Angulo-Jaramillo, R.; Bautista, I.; Burguet, M.; Cerda, A.; Iovino, M.; Prosdocimi, M. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil. Hydrol. Processes 2017, 31, 3520–3532. [Google Scholar] [CrossRef]
- Issaka, Z.; Li, H.; Yue, J.; Tang, P.; Darko, R.O. Water-smart sprinkler irrigation, prerequisite to climate change adaptation: A review. J. Water Clim. Chang. 2018, 9, 383–398. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; Jordán, A. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Szucs, P.; Csepinszky, B.; Sisák, I.; Jakab, G. Rainfall simulation in wheat culture at harvest. Cereal Res. Commun. 2006, 34, 81–84. [Google Scholar]
- Centeri, C.; Jakab, G.; Szalai, Z.; Madarász, B.; Sisák, I.; Csepinszky, B.; Bíró, Z. Rainfall simulation studies in Hungary. In Soil Erosion: Causes, Processes and Effects; Fournier, A.J., Ed.; Nova Science Publisher: New York, NY, USA, 2011; pp. 177–217. [Google Scholar]
- Mayerhofer, C.; Meißl, G.; Klebinder, K.; Kohl, B.; Markart, G. Comparison of the results of a small-plot and a large-plot rainfall simulator—Effects of land use and land cover on surface runoff in Alpine catchments. Catena 2017, 156, 184–196. [Google Scholar] [CrossRef]
- Szabó, J.A.; Jakab, G.; Szabó, B. Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall. Hung. Geog. Bull. 2015, 64, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; El Hajj, M.; Choker, M.; Zribi, M.; Bazzi, H.; Vaudour, E.; Gilliot, J.M.; Ebengo, D.M. Potential of Sentinel-1 Images for Estimating the Soil Roughness over Bare Agricultural Soils. Water 2018, 10, 131. [Google Scholar] [CrossRef]
- Martinez-Agirre, A.; Álvarez-Mozos, J.; Giménez, R. Evaluation of surface roughness parameters in agricultural soils with different tillage conditions using a laser profile meter. Soil Tillage Res. 2016, 161, 19–30. [Google Scholar] [CrossRef]
- Bullard, J.E.; Ockelford, A.; Strong, C.L.; Aubault, H. Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils. Geoderma 2018, 313, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Szalai, Z.; Szabó, J.; Kovács, J.; Mészáros, E.; Albert, G.; Centeri, Cs.; Szabó, B.; Madarász, B.; Zacháry, D.; Jakab, G. Redistribution of Soil Organic Carbon Triggered by Erosion at Field Scale Under Subhumid Climate, Hungary. Pedosphere 2016, 26, 652–665. [Google Scholar] [CrossRef] [Green Version]
- Brasington, J.; Smart, R.M.A. Close-range digital photogrammetric analysis of experimental drainage basin evolution. Earth Surf. Process. Landf. 2003, 28, 231–247. [Google Scholar] [CrossRef]
- Ruzgienė, B.; Berteška, T.; Gečyte, S.; Jakubauskienė, E.; Aksamitauskas, V.Č. The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement 2015, 73, 619–627. [Google Scholar] [CrossRef]
- Thomsen, LM.; Baartman, J.E.M.; Barneveld, R.J.; Starkloff, T.; Stolte, J. Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. Soil 2015, 1, 399–410. [Google Scholar] [CrossRef]
- Tarolli, P.; Cavalli, M.; Masin, R. High-resolution morphologic characterization of conservation agriculture. Catena 2019, 172, 846–856. [Google Scholar] [CrossRef]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Gilliot, J.M.; Vaudour, E.; Michelin, J. Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields. Comput. Electron. Agric. 2017, 134, 63–78. [Google Scholar] [CrossRef]
- Da Silva, A.M.; Huang, C.H.; Francesconi, W.; Saintil, T.; Villegas, J. Using landscape metrics to analyze micro-scale soil erosion processes. Ecol. Indic. 2015, 56, 184–193. [Google Scholar] [CrossRef]
- Bauer, T.; Strauss, P.; Grims, M.; Kamptner, E.; Mansberger, R.; Spiegel, H. Long-term agricultural management effects on surface roughness and consolidation of soils. Soil Tillage Res. 2015, 151, 28–38. [Google Scholar] [CrossRef]
- Ding, W.; Huang, C. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 2017, 295, 801–810. [Google Scholar] [CrossRef]
- Dövényi, Z. Inventory of Microregions in Hungary; MTAFKI: Budapest, Hungary, 2010; p. 876. [Google Scholar]
- Dobos, E.; Kovács, K.; Dobos, A.; Vadnai, P.; Hadobás, Á.; Gál-Szabó, L. Pedological investigations and planning for irrigation system construction. Unpublished measurement report, 2017. (In Hungarian)
- IUSS Working Group WRB. Word Reference Base for Soil Resources; IUSS/ISRIC/FAO: Rome, Italy, 2014; p. 139. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Routledge: London, UK, 2014; p. 345. [Google Scholar]
- Salles, C.; Poesen, J.; Borselli, L. Measurement of simulated drop size distribution with an optical spectro pluviometer: Sample size considerations. Earth Surf. Processes and Landforms 1999, 24, 545–556. [Google Scholar] [CrossRef]
- Salles, C.; Poesen, J. An Optical Spectro Pluviometer for the measurement of raindrop properties. IAHS Publ. 1998, 249, 97–102. [Google Scholar]
- Kuipers, J. A relief meter for soil cumulative studies. Neth. J. Agric. Sci. 1957, 5, 255–262. [Google Scholar]
- Wairihu, M.; Lal, R. Tillage and land use effects on soil microporosity in Ohio, USA and Kolombangara, Solomon Islands. Soil Tillage Res. 2006, 88, 80–84. [Google Scholar] [CrossRef]
- Ruggenthaler, R.; Meißl, G.; Geitner, C.; Leitinger, G.; Endstrasser, N.; Schöberl, F. Investigating the impact of initial soil moisture conditions on total infiltration by using an adapted double-ring infiltrometer. Hydrol. Sci. J. 2016, 61, 1263–1279. [Google Scholar] [CrossRef]
- Vermang, J.; Norton, L.D.; Huang, C.; Cornelis, W.M.; da Silva, A.M.; Gabriels, D. Characterization of Soil Surface Roughness Effects on Runoff and Soil Erosion Rates under Simulated Rainfall. Soil Sci. Soc. Am. J. 2014, 79, 903–916. [Google Scholar] [CrossRef]
- Jakab, G.; Németh, T.; Csepinszky, B.; Madarász, B.; Szalai, Z.; Kertész, Á. The influence of short term soil sealing and crusting on hydrology and erosion at Balaton Uplands, Hungary. Carpathian J. Earth Environ. Sci. 2013, 8, 147–155. [Google Scholar]
- Zhao, L.; Hou, R.; Wu, F.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Bottinelli, N.; Angers, D.A.; Hallaire, V.; Michot, D.; Le Guillou, C.; Cluzeau, D.; Heddadj, D.; Menasseri-Aubry, S. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage Res. 2017, 170, 14–17. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Shainberg, I.; Bakker, D.; Keren, R. Effect of soil texture and CaCO3 content on water infiltration in crusted soil as related to water salinity. Irrig. Sci. 1985, 6, 281–294. [Google Scholar] [CrossRef]
- Jester, W.; Klik, A. Soil surface roughness measurement—methods, applicability, and surface representation. Catena 2005, 64, 174–192. [Google Scholar] [CrossRef]
- Hwang, J.T.; Chen, Y.W.; Lian, W.Y.; Yang, Y.Y.; Chu, T.C. DSM generation on the shade of tree area of aerial photogrammetry. In Proceedings of the 23rd International Conference on Geoinformatics, IEEE, Wuhan, China, 19–21 June 2015. [Google Scholar] [CrossRef]
- Chaney, K.; Swift, R.S. The influence of organic matter on aggregate stability in some British soils. Eur. J. Soil Sci. 1984, 35, 223–230. [Google Scholar] [CrossRef]
- Amézketa, E. Soil Aggregate Stability: A Review. J. Sustainable Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Rengasamy, P.; Olsson, K.A. Sodicity and soil structure. Aust. J. Soil Res. 1991, 29, 935–952. [Google Scholar] [CrossRef]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S. Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Adv. Water Resour. 2011, 34, 303–313. [Google Scholar] [CrossRef]
- Telbisz, T.; Kovács, G.; Székely, B.; Szabó, J. Topographic swath profile analysis: A generalization and sensitivity evaluation of a digital terrain analysis tool. Z. Geomorphol. 2013, 57, 485–513. [Google Scholar] [CrossRef]
- Carter, M.R. Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Can. J. Soil Sci. 1990, 70, 425–433. [Google Scholar] [CrossRef]
Depth | pHKCl | Ca | CaCO3 | Salt Content | SOM | P2O5 | K2O | Na | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | m/m % | mg/kg | 50< | 50–2 | <2 | |||||||
Solonetz | 0–30 | 6.68 | 0.23 | 0.57 | 0.086 | 2.51 | 138 | 196 | 300< | 39.5 | 26.8 | 33.7 |
Phaeozem | 0–30 | 7.23 | 0.46 | 1.15 | 0.048 | 2.36 | 284 | 320 | 300< | 33.2 | 34.5 | 32.3 |
Chernozem | 0–30 | 7.04 | 0.44 | 1.13 | 0.054 | 3.49 | 582 | 298 | 106 | 30.3 | 24.7 | 44.9 |
Seedbed Conditions | Stubble Conditions | |||||
---|---|---|---|---|---|---|
Phaeozem | Solonetz | Chernozem | Phaeozem | Solonetz | Chernozem | |
Precipitation amount (mm) | 47.5 | 16.26 | 18.74 | 30.6 | 34.0 | 39.4 |
Precipitation intensity (mm h−1) | 47.91 | 51.35 | 35.21 | 45.8 | 42.0 | 61.5 |
Excess water appearance (s) | 287 | 235 | 180 | 587 | 392 | 457 |
Runoff initiation (s) | 1556 | 495 | 530 | 786 | 1028 | 776 |
Runoff amount (mm) | 8.31 | 4.68 | 3.84 | 5.11 | 3.00 | 15.35 |
Final runoff intensity (mm h−1) | 40.68 | 47.16 | 32.04 | 27.4 | 17.6 | 61.3 |
Final infiltration intensity (mm h−1) | 7.23 | 4.19 | 3.17 | 18.44 | 24.31 | 0.21 |
Sediment yield (g) | 448.99 | 11.99 | 161.38 | 16.0 | 8.3 | 15.4 |
Runoff concentration (g L−1) | 88.93 | 5.82 | 51.79 | 5.17 | 4.8 | 4.8 |
Seedbed Conditions | Stubble Conditions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phaeozem | Solonetz | Chernozem | Phaeozem | Solonetz | Chernozem | |||||||
B | A | B | A | B | A | B | A | B | A | B | A | |
Min. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Max. (TR) | 163 | 115 | 118 | 100 | 102 | 95 | 157 | 75 | 85 | 78 | 128 | 92 |
Mean | 54 | 52 | 56 | 51 | 37 | 34 | 47 | 26 | 29 | 32 | 35 | 35 |
Median | 53 | 48 | 58 | 52 | 36 | 33 | 46 | 23 | 28 | 31 | 35 | 34 |
SD | 26 | 25 | 21 | 15 | 17 | 16 | 19 | 14 | 10 | 10 | 13 | 13 |
Skewness | 0.50 | 0.22 | −0.43 | 0.14 | 0.17 | 0.23 | 0.58 | 0.87 | 0.59 | 0.26 | 0.14 | 0.04 |
Kurtosis | 0.26 | −0.78 | −0.14 | −0.26 | −0.77 | −0.54 | 0.40 | 0.31 | 1.19 | 0.47 | −0.33 | −0.54 |
Seedbed Conditions | Stubble Conditions | |||
---|---|---|---|---|
TR ratio | Infiltration | TR Ratio | Infiltration | |
mm h−1 | mm h−1 | |||
Phaeozem | 0.71 | 7.20 | 0.48 | 18.40 |
Solonetz | 0.85 | 4.19 | 0.92 | 24.30 |
Chernozem | 0.93 | 3.17 | 0.72 | 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakab, G.; Dobos, E.; Madarász, B.; Szalai, Z.; Szabó, J.A. Spatial and Temporal Changes in Infiltration and Aggregate Stability: A Case Study of a Subhumid Irrigated Cropland. Water 2019, 11, 876. https://doi.org/10.3390/w11050876
Jakab G, Dobos E, Madarász B, Szalai Z, Szabó JA. Spatial and Temporal Changes in Infiltration and Aggregate Stability: A Case Study of a Subhumid Irrigated Cropland. Water. 2019; 11(5):876. https://doi.org/10.3390/w11050876
Chicago/Turabian StyleJakab, Gergely, Endre Dobos, Balázs Madarász, Zoltán Szalai, and Judit Alexandra Szabó. 2019. "Spatial and Temporal Changes in Infiltration and Aggregate Stability: A Case Study of a Subhumid Irrigated Cropland" Water 11, no. 5: 876. https://doi.org/10.3390/w11050876