Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Watershed Data
2.3. Climate Projection
2.4. Postprocessing of Climate Data: Bias Correction
2.5. Hydrological Modeling
2.5.1. The VIC Model
2.5.2. Model Calibration and Validation
2.5.3. Flood Frequency Analysis
3. Results
3.1. Changes in Climate Conditions
3.2. Future Hydrological Extremes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Eds.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef] [Green Version]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.A.Z.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Grabs, T.; Karlsen, R.H.; Laudon, H.; Bishop, K. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. Water Resour. Res. 2015, 51, 9425–9446. [Google Scholar] [CrossRef] [Green Version]
- Kharel, G.; Kirilenko, A. Comparing CMIP-3 and CMIP-5 climate projections on flooding estimation of Devils Lake of North Dakota, USA. PeerJ 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Kharel, G.; Zheng, H.; Kirilenko, A. Can land-use change mitigate long-term flood risks in the Prairie Pothole Region? The case of Devils Lake, North Dakota, USA. Reg. Environ. Chang. 2016, 16, 2443–2456. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Li, X.; Shi, P.; Zhou, X. Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble. Stoch. Environ. Res. Risk Assess. 2017, 31, 1077–1089. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Yong, B.; Krysanova, V.; Shi, P.; Li, Z.; Zhou, X. Impacts of climate change on flow regime and sequential threats to riverine ecosystem in the source region of the Yellow River. Environ. Earth Sci. 2018, 77, 465. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, J.; Li, L.; Chen, W.; Wang, Z.; Wang, J. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Chang. 2012, 110, 385–401. [Google Scholar] [CrossRef]
- Chen, H. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull. 2013, 58, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Yira, Y.; Diekkruger, B.; Steup, G.; Bossa, A.Y. Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrol. Earth Syst. Sci. 2017, 21, 2143–2161. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Rogelj, J.; Séférian, R.; Wartenburger, R.; Allen, M.R.; Cain, M.; Millar, R.J.; Ebi, K.L.; Ellis, N.; Hoegh-Guldberg, O.; et al. The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 2018, 558, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Su, B.D.; Jiang, T.; Jin, W.B. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol. 2006, 83, 139–151. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Guerreiro, S.B.; Nicholson, A.; Liang, Q.; Quinn, P.; Zhang, L.; He, B.; Yin, J.; Fowler, H.J. Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrol. Earth Syst. Sci. 2017, 21, 1911–1927. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Wu, J.; Huang, J.; Han, X. Three-Gorges Dam: Risk to ancient fish. Science 2003, 302, 1149–1151. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Li, C. Human impact on floods and flood disasters on the Yangtze River. Geomorphology 2001, 41, 105–109. [Google Scholar] [CrossRef]
- Zeng, X.; Kundzewicz, Z.W.; Zhou, J.; Su, B. Discharge projection in the Yangtze River basin under different emission scenarios based on the artificial neural networks. Quat. Int. 2012, 282, 113–121. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Y.; Shi, Y. Climate change effect on hydrological processes over the Yangtze River basin. Quat. Int. 2011, 244, 202–210. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, T.; Zhou, X.; Xu, C. Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 847–858. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Zeng, X.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the Upper Yangtze River basin. Clim. Chang. 2017, 141, 533–546. [Google Scholar] [CrossRef]
- Woo, M.; Long, T.; Thorne, R. Simulating monthly streamflow for the Upper Changjiang, China, under climatic change scenarios. Hydrol. Sci. J. 2009, 54, 596–605. [Google Scholar] [CrossRef]
- Xu, H.; Taylor, R.G.; Xu, Y. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China. Hydrol. Earth Syst. Sci. 2011, 15, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Lü, H.; Sadeghi, A.M.; Zhu, Y.; Yu, Z.; Ouyang, F.; Su, J.; Chen, R. Assessment on the effect of climate change on streamflow in the source region of the Yangtze River, China. Water 2017, 9. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, J.; Mo, L.; Yuan, Z.; Zhang, P.; Wu, J.; Wang, C.; Wang, Y. Long-term hydropower generation of cascade reservoirs under future climate changes in Jinsha River in Southwest China. Water 2018, 10. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Wortmann, M.; Shi, P.; Hattermann, F.; Lobanova, A.; Aich, V. Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. Clim. Chang. 2017, 141, 483–498. [Google Scholar] [CrossRef]
- Gu, H.; Wang, G.; Yu, Z.; Mei, R. Assessing future climate changes and extreme indicators in east and south Asia using the RegCM4 regional climate model. Clim. Chang. 2012, 114, 301–317. [Google Scholar] [CrossRef]
- Giménez, P.; García-Galiano, S. Assessing regional climate models (RCMs) ensemble-driven reference evapotranspiration over Spain. Water 2018, 10. [Google Scholar] [CrossRef]
- Park, C.; Min, S.; Lee, D.; Cha, D.; Suh, M.; Kang, H.; Hong, S.; Lee, D.; Baek, H.; Boo, K.; et al. Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dyn. 2016, 46, 2469–2486. [Google Scholar] [CrossRef]
- Huang, B.; Polanski, S.; Cubasch, U. Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Clim. Res. 2015, 64, 141–158. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Yang, C.; Ju, Q.; Yang, T.; Zhang, D. High-resolution ensemble projections and uncertainty assessment of regional climate change over China in CORDEX East Asia. Hydrol. Earth Syst. Sci. 2018, 22, 3087–3103. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Xu, K.H.; Li, A.C.; Milliman, J.D.; Velozzi, D.M.; Xiao, S.B.; Yang, Z.S. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 2007, 85, 208–224. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Saito, Y.; Zhang, Y.; Bi, N.; Sun, X.; Yang, Z. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci. Rev. 2011, 108, 80–100. [Google Scholar] [CrossRef]
- Lu, X.X. Vulnerability of water discharge of large Chinese rivers to environmental changes: An overview. Reg. Environ. Chang. 2004, 4, 182–191. [Google Scholar] [CrossRef]
- Yang, S.L.; Liu, Z.; Dai, S.B.; Gao, Z.X.; Zhang, J.; Wang, H.J.; Luo, X.X.; Wu, C.S.; Zhang, Z. Temporal variations in water resources in the Yangtze River (Changjiang) over the Industrial Period based on reconstruction of missing monthly discharges. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Verdin, K.L.; Verdin, J.P. A topological system for delineation and codification of the Earth’s river basins. J. Hydrol. 1999, 218, 1–12. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Digital soil map of the world and derived soil properties. In Land Water Digital Media Series; FAO: Rome, Italy, 1997. [Google Scholar]
- Hansen, M.C.; Defries, R.S.; Yownshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, S.; Lee, D.; Tang, J.; Niu, X.; Hui, P.; Gutowski, W.J.; Dairaku, K.; McGregor, J.L.; Katzfey, J.; et al. Building Asian climate change scenario by multi-regional climate models ensemble. Part II: Mean precipitation. Int. J. Climatol. 2016, 36, 4253–4264. [Google Scholar] [CrossRef]
- Suh, M.S.; Oh, S.G.; Lee, D.K.; Cha, D.H.; Choi, S.J.; Jin, C.S.; Hong, S.Y. Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Clim. 2012, 25, 7067–7082. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, J.; Wang, G.; Yang, T.; Ju, Q.; Yang, C.; Xu, F.; Fan, C. Assessing CMIP5 general circulation model simulations of precipitation and temperature over China. Int. J. Climatol. 2015, 35, 2431–2440. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; National Center for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar]
- Cha, D.; Lee, D. Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Hong, S.; Park, H.; Cheong, H.; Kim, J.E.; Koo, M.; Jang, J.; Ham, S.; Hwang, S.; Park, B.; Chang, E.; et al. The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci. 2013, 49, 219–243. [Google Scholar] [CrossRef]
- Maraun, D.; Shepherd, T.G.; Widmann, M.; Zappa, G.; Walton, D.; Gutiérrez, J.M.; Hagemann, S.; Richter, I.; Soares, P.M.M.; Hall, A.; et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Chang. 2017, 7, 764–773. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, G.; Wang, J.; Ju, Q.; Yang, C.; Fan, C. Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 693–707. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate model over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Block, P.J.; Souza Filho, F.A.; Sun, L.; Kwon, H.H. A streamflow forecasting framework using multiple climate and hydrological models. J. Am Water Resour. Assoc. 2009, 45, 828–843. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.F.; Lettenmaier, D.P.; Zartarian, V.G. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. Atmos. 1992, 97, 2717–2728. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- Nijssen, B.; Schnur, R.; Lettenmaier, D.P. Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Clim. 2001, 14, 1790–1808. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, K.; Hong, Y.; Gourley, J.J.; Kellogg, W.; McPherson, R.A.; Wan, Z.; Austin, B.N. New multisite cascading calibration approach for hydrological models: Case study in the red river basin using the VIC model. J. Hydrol. Eng. 2016, 21. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Liang, X.; Chen, J.; Gong, P. An assessment of the VIC-3L hydrological model for the Yangtze River basin based on remote sensing: A case study of the Baohe River basin. Can. J. Remote Sens. 2004, 30, 840–853. [Google Scholar] [CrossRef]
- Guo, S.; Guo, J.; Zhang, J.; Chen, H. VIC distributed hydrological model to predict climate change impact in the Hanjiang basin. Sci. China Ser. E Technol. Sci. 2009, 52, 3234–3239. [Google Scholar] [CrossRef]
- Liang, X.; Lettennmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wen, F.; Wood, E.F. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wood, E.F.; Lettennmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Li, H.; Wigmosta, M.S.; Wu, H.; Huang, M.; Ke, Y.; Coleman, A.M.; Leung, L.R. A physically based runoff routing model for land surface and earth system models. J. Hydrometeorol. 2013, 14, 808–828. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Yu, Z.; Gu, H.; Wang, J.; Xia, J.; Lu, B. Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stoch. Environ. Res. Risk Assess. 2018, 32, 1–16. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models 1: A discussion of priciples. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Hlavčová, K.; Parajka, J.; Viglione, A.; Merz, R.; Blöschl, G. Dependence between flood peaks and volumes: A case study on climate and hydrological controls. Hydrol. Sci. J. 2015, 60, 968–984. [Google Scholar] [CrossRef]
- The Ministry of Water Resources of the People’s Republic of China. Regulation for Calculating Design Flood of Water Resources and Hydropower Projects (LS44-93); China Water Power Press: Beijing, China, 1993. (In Chinese)
- Koutrouvelis, I.A.; Canavos, G.C. Estimation in the Pearson type 3 distribution. Water Resour. Res. 1999, 35, 2693–2704. [Google Scholar] [CrossRef] [Green Version]
- Matalas, N.C. Probability Distribution of Low Flows; 434A; U.S. Geological Survey: Reston, VA, USA, 1963.
- Martino, G.D.; Fontana, N.; Marini, G.; Singh, V.P. Variability and trend in seasonal precipitation in the continental United States. J. Hydrol. Eng. 2013, 18, 630–640. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2012, 3, 369–373. [Google Scholar] [CrossRef]
- Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Steinschneider, S.; Wi, S.; Brown, C. The integrated effects of climate and hydrologic uncertainty on future flood risk assessments. Hydrol. Process. 2015, 29, 2823–2839. [Google Scholar] [CrossRef]
- Bennett, K.E.; Werner, A.T.; Schnorbus, M. Uncertainties in hydrologic and climate change impact analyses in headwater basins of British Columbia. J. Clim. 2012, 25, 5711–5730. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, Y.; Liu, X.; Gao, Z. Current and future precipitation extremes over Mississippi and Yangtze River basins as simulated in CMIP5 models. J. Earth Sci. 2016, 27, 22–36. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- Oh, S.; Park, J.; Lee, S.; Suh, M. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos. 2014, 119, 2913–2927. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Xie, Z. Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling. J. Geophys. Res. Atmos. 2016, 121, 6802–6821. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, G.; Wang, X.; Cheng, G.; Wu, Y. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs. Clim. Dyn. 2018, 50, 4037–4060. [Google Scholar] [CrossRef]
RCM | Expansion Name | Institute | Resolution | Reference |
---|---|---|---|---|
HadGEM3-RA | Hadley Centre Global Environmental Model version 3 regional climate model | The Met Office Hadley Centre | ≈50 km | [49] |
WRF | Fifth-Generation Penn State/NCAR Mesoscale Model | National Center for Atmospheric Research | 50 km | [50] |
MM5 | Fifth-Generation Penn State/NCAR Mesoscale Model | National Center for Atmospheric Research | 50 km | [51] |
RegCM | Regional Climate Model version 4 | The International Centre for Theoretical Physics | 50 km | [52] |
RSM | Regional Spectral Model | National Centers for Environmental Prediction | 50 km | [53] |
Parameter | Physical Meaning | Realistic Range | Value |
---|---|---|---|
b | Exponent of variable infiltration capacity curve | 0–10.0 | 0.4 |
Dm | Maximum velocity of baseflow (mm/day) | 0–30 | 10 |
Ds | Fraction of Dm where non-linear baseflow begins | 0–1.0 | 0.56 |
Ws | Fraction of maximum soil moisture where non-linear baseflow begins | 0–1.0 | 0.65 |
d1 | Thickness of the first soil layer (m) | 0.05–2.0 | 0.1 |
d2 | Thickness of the second soil layer (m) | 0.05–2.0 | 0.3 |
d3 | Thickness of the third soil layer (m) | 0.05–2.0 | 1.0 |
Station | Scenario | Temperature (°C) | Precipitation (%) | Evapotranspiration (%) | Streamflow (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | ||
Cuntan | RCP4.5 | 1.95 | 1.95 | 1.69 | 2.16 | −0.44 | 2.19 | 5.12 | −5.97 | −3.61 | −1.65 | −1.90 | −5.43 | −0.69 | 2.30 | 6.72 | 3.07 |
RCP8.5 | 2.23 | 2.27 | 2.22 | 2.68 | −0.58 | 9.19 | 6.23 | −2.62 | −2.09 | 2.27 | −2.41 | −2.86 | 1.90 | 7.64 | 8.97 | 4.62 | |
Yichang | RCP4.5 | 1.89 | 1.98 | 1.68 | 2.02 | 0.92 | 3.75 | 6.09 | −5.71 | 1.35 | −1.79 | −2.03 | −5.37 | −0.68 | 3.34 | 8.35 | 3.99 |
RCP8.5 | 2.19 | 2.31 | 2.20 | 2.53 | 0.77 | 11.05 | 6.33 | −2.57 | 1.38 | 1.21 | −2.96 | −3.42 | 1.95 | 9.32 | 9.93 | 5.63 | |
Datong | RCP4.5 | 1.93 | 1.79 | 1.63 | 1.89 | 6.41 | 7.23 | 7.44 | −3.85 | 5.23 | −4.41 | −3.98 | −8.09 | 4.72 | 8.41 | 13.93 | 8.90 |
RCP8.5 | 2.17 | 2.17 | 2.15 | 2.37 | 9.44 | 16.12 | 5.81 | −2.51 | 4.50 | −3.31 | −5.45 | −6.89 | 8.24 | 17.49 | 13.45 | 10.29 |
Return Period (Year) | Maximum 1-Day Streamflow (%) | Maximum 5-Day Water Volume (%) | Maximum 15-Day Water Volume (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cuntan | Yichang | Datong | Cuntan | Yichang | Datong | Cuntan | Yichang | Datong | ||||||||||
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
2 | 9.64 | 13.47 | 11.55 | 14.38 | 14.33 | 13.85 | 9.76 | 13.42 | 10.91 | 13.76 | 13.91 | 13.75 | 8.30 | 9.31 | 9.29 | 12.59 | 13.80 | 14.41 |
5 | 8.76 | 15.42 | 11.56 | 14.39 | 15.26 | 16.63 | 8.02 | 14.38 | 9.18 | 14.71 | 13.04 | 13.82 | 5.72 | 9.30 | 6.75 | 12.60 | 12.04 | 12.66 |
10 | 8.35 | 17.15 | 11.67 | 14.50 | 15.72 | 17.95 | 7.42 | 15.12 | 8.99 | 15.36 | 13.04 | 14.41 | 4.97 | 9.22 | 6.50 | 12.62 | 11.82 | 12.58 |
20 | 8.04 | 19.39 | 11.84 | 14.68 | 16.10 | 18.98 | 7.21 | 16.01 | 9.54 | 16.08 | 13.50 | 15.48 | 4.88 | 9.07 | 7.33 | 12.67 | 12.32 | 13.32 |
50 | 7.71 | 22.27 | 12.08 | 14.92 | 16.52 | 20.10 | 7.11 | 17.12 | 10.49 | 16.98 | 14.24 | 16.97 | 5.04 | 8.87 | 8.74 | 12.76 | 13.20 | 14.56 |
Hydrological Variable | Station | 1980–2005 | 2020–2049 | |
---|---|---|---|---|
RCP4.5 | RCP8.5 | |||
Annual precipitation (mm) | Cuntan | 1.55 | 0.36 | 2.91 * |
Yichang | 1.28 | 0.73 | 2.92 | |
Datong | 1.74 | 1.46 | 2.19 | |
Annual average streamflow (m3/s) | Cuntan | −61 | 19 | 22 |
Yichang | −59 | 17 | 34 | |
Datong | −13 | 38 | 85 | |
Maximum 1-day streamflow (m3/s) | Cuntan | −211 | 217 | 261 |
Yichang | −207 | 254 | 294 * | |
Datong | 430 | 380 | 417 * | |
Maximum 5-day water volume (108 m3) | Cuntan | −0.68 | 0.74 | 0.96 |
Yichang | −0.33 | 0.91 | 1.06 | |
Datong | 2.74 | 1.74 * | 2.20 * | |
Maximum 15-day water volume (108 m3) | Cuntan | −0.52 | 0.71 | 2.49 |
Yichang | 0.77 | 1.40 | 1.75 | |
Datong | 5.2 | 2.84 | 3.49 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Yu, Z.; Yang, C.; Ju, Q. Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations. Water 2018, 10, 1279. https://doi.org/10.3390/w10091279
Gu H, Yu Z, Yang C, Ju Q. Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations. Water. 2018; 10(9):1279. https://doi.org/10.3390/w10091279
Chicago/Turabian StyleGu, Huanghe, Zhongbo Yu, Chuanguo Yang, and Qin Ju. 2018. "Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations" Water 10, no. 9: 1279. https://doi.org/10.3390/w10091279