Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Soil and Water Assessment Tool (SWAT)
2.3. Stream Temperature Models
2.3.1. Model 1: Linear Regression
2.3.2. Model 2: A Mechanistic Approach Involving Air Temperature and Hydrological Flows
2.3.3. Model 3: A Mechanistic Approach Involving Air Temperature, Hydrological Flows, and Radiative Components
2.4. Model Calibration/Validation Methodology
3. Results and Discussion
3.1. Hydrology Calibration in SWAT
3.2. Stream Temperature Calibration in SWAT
3.3. Stream Temperature Model Comparison
3.4. Land Cover Effects on Stream Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bogan, T.; Mohseni, O.; Stefan, H.G. Stream temperature-equilibrium temperature relationship. Water Resour. Res. 2003, 39, 149–163. [Google Scholar] [CrossRef]
- Knouft, J.H.; Darren; Ficklin, L. The Potential Impacts of Climate Change on Biodiversity in Flowing Freshwater Systems. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 111–133. [Google Scholar] [CrossRef]
- Van Vliet, M.T.; Franssen, W.H.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Global Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Eaton, J.; Scheller, R. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 1996, 41, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Likens, G.E.; Jaworski, N.A.; Pace, M.L.; Sides, A.M.; Seekell, D.; Wingate, R.L. Rising stream and river temperatures in the United States. Fron. Ecol. Environ. 2010, 8, 461–466. [Google Scholar] [CrossRef]
- Sherwood, Courtney. Thousands of Salmon Die in Hotter-than-Usual Northwest Rivers. U.S. Reuters, 28 July 2015. [Google Scholar]
- Mayer, P.M.; Todd, A.H.; Okay, J.A.; Dwire, K.A. Introduction to the featured collection on riparian ecosystems & buffers. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 207–210. [Google Scholar]
- Brown, G.W. The Alsea watershed study. In Pacific Logging Congress Loggers Handbook; Pacific Logging Congress Loggers: Portland, OR, USA, 1972. [Google Scholar]
- Bond, R.M.; Stubblefield, A.P.; van Kirk, R.W. Sensitivity of Summer Stream Temperatures to Climate Variability and Riparian Reforestation Strategies. J. Hydrol. Reg. Stud. 2015, 4, 267–279. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Stewart, I.T.; Maurer, E.P. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resour. Res. 2012, 48, W01511. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Stefan, G.H.; Preud’Homme, B.E. Stream Temperature Estimation from Air Temperature1. JAWAR J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Barnhart, B.L.; Whittaker, G.W.; Ficklin, D.L. Improved Stream Temperature Simulations in SWAT Using NSGA-II for Automatic Multi-Site Calibration. Trans. ASABE 2014, 57, 517–530. [Google Scholar]
- Ficklin, D.L.; Barnhart, B.L.; Knouft, J.H.; Stewart, I.T.; Maurer, E.P.; Letsinger, S.L.; Whittaker, G.W. Climate change and stream temperature projections in the Columbia River basin: Habitat implications of spatial variation in hydrologic drivers. Hydrol. Earth Syst. Sci. 2014, 18, 4897–4912. [Google Scholar] [CrossRef]
- Du, X.; Shrestha, N.K.; Ficklin, D.L.; Wang, J. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model. Hydrol. Earth Syst. Sci. 2018, 22, 2343–2357. [Google Scholar] [CrossRef]
- Boyd, M.; Kasper, B. Analytical Methods for Dynamic Open Channel Heat and Mass Transfer: Methodology for Heat Source Model; Version 7.0.; Watershed Sciences Inc.: Portland, OR, USA, 2003. [Google Scholar]
- Lee, K.K.; Risley, J.C. Estimates of Ground-Water Recharge, Base Flow, and Stream Reach Gains and Losses in the Willamette River Basin, Oregon; US Department of the Interior, US Geological Survey: Portland, OR, USA, 2002.
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. SWAT User Manual (Version 2009), Texas Water Resources Institute Technical Report; Texas A&M University System: College Station, TX, USA, 2005. [Google Scholar]
- USDA: Geospatial Data Gateway. Available online: https://datagateway.nrcs.usda.gov (accessed on 15 February 2015).
- Todd, D.K. Groundwater. Hydrology, 2nd ed.; John Willey and Sons: New York, NY, USA, 1980. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.M.; Van Liew, W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Gupta, H.; Sorooshian, S.; Yapo, P. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
Parameter | Name | File | Range | Calibration Value |
---|---|---|---|---|
CANMX | Maximum canopy storage (mm H2O) | HRU | +25 for FRSE, FRSE | |
SMFMX | Melt factor for snow on 21 June (mm H2O/C-day) | BSN | 0–10 | 8 |
SMFMN | Melt factor for snow on 12 December (mm H2O/C-day) | BSN | 0–10 | 1 |
LAT_TTIME | Lateral flow travel time (days) | HRU | +5 | |
CH_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | RTE | 0–150 | +6 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) | GW | 0–5000 | * 2.5 |
CN2 | Initial SCS runoff curve number for moisture condition II | MGT | 0–100 | * 0.978 |
ESCO | Soil evaporation compensation factor | BSN or HRU | 0–1 | −0.25 |
Parameter | Name | Range | Calibrated Values |
---|---|---|---|
α | Coefficient influencing snowmelt temperature contributions (unitless) | 0–1 | 1.0 |
β | Coefficient influencing groundwater temperature contributions (unitless) | 0–1 | 0.97 |
λ | Coefficient influencing surface and lateral flow temperature contributions (unitless) | 0–1 | 1.0 |
K | Bulk coefficient of heat transfer (1/h) | 0–1 | 0.025 |
Lag | Average air temperature lag (days) | 0–14 | 6 |
Sub-Basin | Period | RMSE | PBIAS (%) | ||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | ||
8 | 2010–2014 | 3.74 | 2.18 | 2.36 | 23.2 | 6.9 | 2.3 |
15 | 2010–2014 | 3.46 | 1.96 | 1.96 | 21.2 | 3.9 | −0.5 |
17 | 2010–2014 | 2.6 | 1.88 | 2.72 | 13.4 | −2.6 | −8.3 |
36 | 2011–2014 | 2.85 | 2.28 | 3.12 | 13.6 | −2.2 | −1.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, M.; Barnhart, B.; Babbar-Sebens, M.; Ficklin, D. Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool. Water 2018, 10, 1143. https://doi.org/10.3390/w10091143
Mustafa M, Barnhart B, Babbar-Sebens M, Ficklin D. Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool. Water. 2018; 10(9):1143. https://doi.org/10.3390/w10091143
Chicago/Turabian StyleMustafa, Mamoon, Brad Barnhart, Meghna Babbar-Sebens, and Darren Ficklin. 2018. "Modeling Landscape Change Effects on Stream Temperature Using the Soil and Water Assessment Tool" Water 10, no. 9: 1143. https://doi.org/10.3390/w10091143