Next Article in Journal
Assessing Eutrophication Potential of a Freshwater Lake by Relating Its Bioproductivity and Biodiversity: A Case Study of Lake Wilson on Central Oahu, Hawaii
Previous Article in Journal
Nonlinear Response of Streamflow to Climate Change in High-Latitude Regions: A Case Study in Headwaters of Nenjiang River Basin in China’s Far Northeast
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Water 2018, 10(3), 295; https://doi.org/10.3390/w10030295

Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China

1
Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
3
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
*
Author to whom correspondence should be addressed.
Received: 7 February 2018 / Revised: 4 March 2018 / Accepted: 4 March 2018 / Published: 9 March 2018
Full-Text   |   PDF [4897 KB, uploaded 15 March 2018]   |  

Abstract

Long-term hydro-climatic datasets and sophisticated change detection methods are essential for estimating hydro-climatic trends at regional and global scales. Here, we use the ensemble empirical mode decomposition method (EEMD) to investigate runoff oscillations at different time scales and its response to climatic fluctuations in the middle of the Yarlung Zangbo River Basin (MYZRB) over the period 1961–2009. In the study region, results revealed that the runoff presented an overall nonlinear and nonstationary decreasing-increasing alternative trend with weak quasi-three-year and unobvious quasi-five-year cycles at the inter-annual scale, while, significance was discovered with quasi-12-year and quasi-46-year cycles at the inter-decadal scale. Variance contribution rates of the hydrological components suggested that the inter-annual oscillations played an essential role in the runoff variations in the MYZRB. According to the reconstructed inter-decadal runoff series, the runoff may keep declining in future. For the response of runoff to climate change, overall, the runoff had a positive correlation with precipitation and a negative correlation with extreme temperature. But the runoff did not show obvious correlation with mean temperature. Furthermore, from a temporal scale point of view, the inter-annual runoff showed significant response to the inter-annual precipitation. The inter-decadal runoff strongly responded to the inter-annual extreme temperature. These findings will help us understand the hydro-climatic intrinsic mechanism in the MYZRB and develop better water resources management to account for climate change impact. View Full-Text
Keywords: hydro-climatic change trend; ensemble empirical mode decomposition; middle of the Yarlung Zangbo River Basin; multi-scale hydro-climatic change trend; ensemble empirical mode decomposition; middle of the Yarlung Zangbo River Basin; multi-scale
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Liu, J.; Zhang, W.; Liu, T.; Li, Q. Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China. Water 2018, 10, 295.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top