Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Field Measurements
2.3. Statistical Analyses
3. Results
3.1. Soil Water Changes and Soil Compaction
3.2. Above- and Below-Ground Biomass and Species Richness
3.3. The Comprehensive Performance of Above-Ground Biomass, Soil Compaction, Soil Water Storage and Plant Height
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.T.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Lizama, V.; García-Esparza, M.J.; Abrisqueta, I.; Álvarez, I. Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agric. Water Manag. 2016, 170, 110–119. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of smap surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Zhang, D.D.; Yang, B.; Fang, K.; Yue, P.H. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim. Dyn. 2017, 48, 649–660. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Simard, R.R.; Belanger, G.; Laverdiere, M.R.; Chabot, R. Mixed papermill residues affect yield, nutritive value and nutrient use of a grass-alfalfa sward. Can. J. Soil Sci. 2001, 81, 103–111. [Google Scholar] [CrossRef]
- Morales, M.R.; Cordero, S.A.; Crespo, M.C. Selection of alfalfa “Tierra de Campos” for grazing and for harvesting incorporating identification through homozygosis for an isozymatic Locus. Información Técnica Económica Agraria 2001, 97, 60–72. [Google Scholar]
- Kunrath, T.R.; Lemaire, G.; Sadras, V.O.; Gastal, F. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crop. Res. 2018, 222, 1–11. [Google Scholar] [CrossRef]
- Jia, X.X.; Shao, M.A.; Zhang, C.C.; Zhao, C.L. Regional temporal persistence of dried soil layer along south-north transect of the Loess Plateau, China. J. Hydrol. 2015, 528, 152–160. [Google Scholar] [CrossRef]
- Alexander, P.; Moran, D.; Smith, P.; Hastings, A.; Wang, S.; Sünnenberg, G.; Lovett, A.; Tallis, M.J.; Casella, E.; Taylor, G.; et al. Estimating UK perennial energy crop supply using farm-scale models with spatially disaggregated data. GCB Bioenergy 2014, 6, 142–155. [Google Scholar] [CrossRef]
- Parajuli, R.; Knudsen, M.T.; Djomo, S.N.; Corona, A.; Birkved, M.; Dalgaard, T. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Sci. Total Environ. 2017, 586, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, H.L.; Gao, X.; Qi, Y.S.; Xu, X. Seasonal patterns in water uptake for Medicago sativa, grown along an elevation gradient with shallow groundwater table in Yanchi county of Ningxia, northwest China. J. Arid Land 2016, 8, 1–14. [Google Scholar] [CrossRef]
- Ridley, A.M.; Christy, B.; Dunin, F.X.; Haines, P.J.; Wilson, K.F.; Ellington, A. Lucerne in crop rotations on the Riverine Plains. Crop Pasture Sci. 2001, 52, 263–277. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Zhang, Z.H.; Wang, X.L.; Guo, R.Y.; Siddique, K.H.M. Productivity and water use of alfalfa and subsequent crops in the semiarid Loess Plateau with different stand ages of alfalfa and crop sequences. Field Crop. Res. 2009, 114, 58–65. [Google Scholar] [CrossRef]
- Lothar, M.; Behrendt, A.; Schalitz, G.; Schindler, U. Above-ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. J. Agric. Water Manag. 2005, 75, 117–136. [Google Scholar]
- Petitjean, C.; Hénault, C.; Perrin, A.S.; Pontet, C.; Metay, A.; Bernoux, M.; Jehanno, T.; Viard, A.; Roggy, J.C. Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-and-mulch method. Agric. Ecosyst. Environ. 2015, 208, 64–74. [Google Scholar] [CrossRef]
- Lamb, J.F.S.; Jung, H.J.G.; Sheaffer, C.C.; Samac, D.A. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci. 2007, 47, 1407–1415. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crop. Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Sainju, U.M.; Lenssen, A.W. Dryland soil carbon dynamics under alfalfa and durum-forage cropping sequences. Soil Tillage Res. 2011, 113, 30–37. [Google Scholar] [CrossRef]
- Gates, J.B.; Scanlon, B.R.; Mu, X.; Zhang, L. Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeol. J. 2011, 19, 865–875. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Y.; Jia, C.; Huang, Z.; He, H.H.; Han, F.P.; Shen, W.B.; Wu, G.L. Soil water storage compensation potential of herbaceous energy crops in semi-arid region. Field Crop. Res. 2018, 223, 41–47. [Google Scholar] [CrossRef]
- Mitchell, M.L.; Norman, H.C.; Whalley, R.D.B. Use of functional traits to identify Australian forage grasses, legumes and shrubs for domestication and use in pastoral areas under a changing climate. Crop Pasture Sci. 2015, 66, 71–89. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Condon, L.E. Connections between groundwater flow and transpiration partitioning. Science 2016, 353, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.J.; Han, C.L.; Fan, J.W.; Shi, X.P.; Kong, M.; Shi, X.Y.; Siddique, K.H.M.; Zhao, Y.Y.; Li, F.M. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop. Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Chen, W.L.; Wang, J.L. Response of temporal variation of soil moisture to vegetation in semi-arid Loess Plateau, China. Catena 2014, 115, 123–133. [Google Scholar] [CrossRef]
- Chen, G.; Weil, R.R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 2011, 117, 17–27. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Ahmad, N.; Hassan, F.U.; Belford, R.K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum): I. Compaction. Field Crop. Res. 2009, 110, 54–60. [Google Scholar] [CrossRef]
- McCallum, M.H.; Peoples, M.B.; Connor, D.J. Contributions of nitrogen by grassland pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.) based pasture ley in the Victorian Wimmera. Aust. J. Agric. Res. 2000, 51, 13–22. [Google Scholar] [CrossRef]
- Fichtner, A.; Härdtle, W.; Li, Y.; Bruelheide, H.; Kunz, M.; Von, O.G. From competition to facilitation: How tree species respond to neighbourhood diversity. Ecol. Lett. 2017, 20, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Hrivnák, R.; Gömöry, D.; Slezák, M.; Ujházy, K.; Hédl, R.; Jarčuška, B.; Ujházyová, M. Species richness pattern along altitudinal gradient in central European beech forests. Folia Geobot. 2014, 49, 425–441. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, J.; Tahir, M.N.; Fang, X.Y. Validation of the EPIC model and its utilization to research the sustainable recovery of soil desiccation after alfalfa (Medicago sativa L.) by grain crop rotation system in the semi-humid region of the Loess Plateau. Agric. Ecosyst. Environ. 2012, 161, 152–160. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Huang, Z.; Cui, Z.; Lu, R.; Zhang, R.-Q.; Liu, Y.; López-Vicente, M.; Ahirwal, J.; Wei, X.-H.; Wu, G.-L. Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water 2018, 10, 1538. https://doi.org/10.3390/w10111538
Sun L, Huang Z, Cui Z, Lu R, Zhang R-Q, Liu Y, López-Vicente M, Ahirwal J, Wei X-H, Wu G-L. Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water. 2018; 10(11):1538. https://doi.org/10.3390/w10111538
Chicago/Turabian StyleSun, Lei, Ze Huang, Zeng Cui, Rong Lu, Rui-Qi Zhang, Yu Liu, Manuel López-Vicente, Jitendra Ahirwal, Xue-Hong Wei, and Gao-Lin Wu. 2018. "Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area" Water 10, no. 11: 1538. https://doi.org/10.3390/w10111538
APA StyleSun, L., Huang, Z., Cui, Z., Lu, R., Zhang, R.-Q., Liu, Y., López-Vicente, M., Ahirwal, J., Wei, X.-H., & Wu, G.-L. (2018). Soil Water Depletion in Planted Alfalfa Pastures in an Alpine Pastoral Area. Water, 10(11), 1538. https://doi.org/10.3390/w10111538