Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Case Studies
2.3. Theoretical Background of the Adopted Frameworks
2.3.1. The TCEV Distribution
2.3.2. Stationary Framework
2.3.3. Non-Stationary Framework
2.3.4. Procedure for Models Application
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 2nd ed.; McGraw-Hill: New York, NY, USA, 2013; pp. 1–624. ISBN 9780071743914. [Google Scholar]
- Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015, 77, 17–36. [Google Scholar] [CrossRef]
- Serinaldi, F. An uncertain journey around the tails of multivariate hydrological distributions. Water Resour. Res. 2013, 49, 6527–6547. [Google Scholar] [CrossRef] [Green Version]
- Serinaldi, F. Assessing the applicability of fractional order statistics for computing confidence intervals for extreme quantiles. J. Hydrol. 2009, 376, 528–541. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J. Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. J. Hydrol. Eng. 2014, 19, 554–568. [Google Scholar] [CrossRef]
- Acero, F.J.; Parey, S.; García, J.A.; Dacunha-Castelle, D. Return Level Estimation of Extreme Rainfall over the Iberian Peninsula: Comparison of Methods. Water 2018, 10, 179. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Chang. 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Rootzén, H.; Katz, R.W. Design life level: Quantifying risk in a changing climate. Water Resour. Res. 2013, 49, 5964–5972. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Montanari, A. Negligent killing of scientific concepts: The stationarity case. Hydrol. Sci. J. 2014, 60, 1174–1183. [Google Scholar] [CrossRef]
- Klemeš, V. Tall tales about tails of hydrological distributions. J. Hydrol. Eng. 2000, 5, 227–231. [Google Scholar] [CrossRef]
- Gabriele, S.; Arnell, N. A hierarchical approach to regional flood frequency analysis. Water Resour. Res. 1991, 27, 1281–1289. [Google Scholar] [CrossRef]
- Obeysekera, J.; Salas, J.D. Quantifying the uncertainty of design floods under nonstationary conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Griffis, V.W. Getting from here to where? Flood frequency analysis and climate. J. Am. Water Resour. Assoc. 2011, 47, 506–513. [Google Scholar] [CrossRef]
- Montanari, A.; Koutsoyiannis, D. Modeling and mitigating natural hazards: Stationarity is immortal! Water Resour. Res. 2014, 50, 9748–9756. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.; De Luca, D.L. Rainfall-runoff model parameter conditioning on regional hydrological signatures: Application to ungauged basins in southern Italy. Hydrol. Res. 2017, 48, 714–725. [Google Scholar] [CrossRef]
- Laio, F.; Di Baldassarre, G.; Montanari, A. Model selection techniques for the frequency analysis of hydrological extremes. Water Resour. Res. 2009, 45, W07416. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Sirangelo, B. Trends in the daily precipitation categories of Calabria (southern Italy). Procedia Eng. 2016, 162, 32–38. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T. Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int. J. Climatol. 2001, 21, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Brugnara, Y.; Brunetti, M.; Maugeri, M.; Nanni, T.; Simolo, C. High-resolution analysis of daily precipitation trends in the central Alps over the last century. Int. J. Climatol. 2012, 32, 1406–1422. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 1–31. [Google Scholar] [CrossRef]
- Rossi, F.; Fiorentino, M.; Versace, P. Two-component extreme value distribution for flood frequency analysis. Water Resour. Res. 1984, 20, 847–856. [Google Scholar]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal patterns of the mean annual precipitation at decadal time scale in southern Italy (Calabria region). Theor. Appl. Climatol. 2011, 105, 431–444. [Google Scholar] [CrossRef]
- Federico, S.; Avolio, E.; Pasqualoni, L.; Bellecci, C. Atmospheric patterns for heavy rain events in Calabria. Nat. Hazards Earth Syst. Sci. 2008, 8, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.D. Compound gamma, beta and F distributions. Metrika 1970, 16, 27–31. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall. I: Theoretical investigation. Hydrol. Sci. J. 2004, 49, 575–590. [Google Scholar] [CrossRef]
- Van Montfort, M.A.J.; van Putten, B. A comment on modelling extremes: Links between multi-component extreme value and general extreme value distributions. J. Hydrol. N. Z. 2002, 41, 197–202. [Google Scholar]
- Dalrymple, T. Flood-frequency analyses, Manual of Hydrology: Part 3. Water Supply Pap. 1960, 1543A. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables, 10th ed.; Dover Publications, Inc.: Mineola, NY, USA, 1972. [Google Scholar]
- Beran, M.A.; Hosking, J.R.M.; Arnell, N.W. Comment on ‘Two-component extreme value distribution for flood frequency analysis,’ by Fabio Rossi, Mauro Fiorentino, and Pasquale Versace. Water Resour. Res. 1986, 22, 263–266. [Google Scholar] [CrossRef]
- Versace, P.; Ferrari, E.; Gabriele, S.; Rossi, F. Valutazione delle Piene in Calabria; CNR-IRPI e GNDCI: Geodata, Cosenza, Italy, 1989. (In Italian) [Google Scholar]
- Arnell, N.; Gabriele, S. The performance of the Two Component Extreme Value distribution in regional flood frequency analysis. Water Resour. Res. 1988, 24, 879–887. [Google Scholar] [CrossRef]
- Fiorentino, M.K.; Arora, K.; Singh, V.P. The two-component extreme value distribution for flood frequency analysis: Derivation of a new estimation method. Stoch. Hydrol. Hydraul. 1987, 1, 199–208. [Google Scholar] [CrossRef]
- Biondi, D.; Cruscomagno, F.; De Luca, D.L.; Ferrari, E.; Versace, P. La valutazione delle piene in Calabria: 1989–2013 (in Italian). In Proceedings of the XXXIV Corso di Aggiornamento Tecniche per la Difesa dall’Inquinamento, Guardia Piemontese, CS, Italy, 19–22 June 2013; pp. 187–216. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Wiley-Blackwell: Hoboken, NJ, USA, 2008; p. 736. ISBN 978-1-405-17917-1. [Google Scholar]
- EEA—European Environment Agency. Climate Change Adaptation ad Disaster Risk Reduction in Europe; EEA: Kongens Nytorv, Denmark, 2017; Volume 15, pp. 1–171. [Google Scholar]
- ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale. Il Clima Futuro in Italia: Analisi delle proiezioni dei modelli regionali; ISPRA: Via Vitaliano Brancati, Roma, 2015; Volume 58, pp. 1–64. ISBN 978-88-448-0723-8. (In Italian) [Google Scholar]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys Res. Lett. 2015, 42, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Kendon, E.J.; Fowler, H.J.; Blenkinsop, S.; Roberts, N.M.; Ferro, C.A.T. The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J. Clim. 2014, 27, 6155–6174. [Google Scholar] [CrossRef]
- Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Senior, C.A. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Chang. 2014, 4, 570–576. [Google Scholar] [CrossRef]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Weibull, W. A statistical theory of strength of materials. Ing. Vetensk. Akad. Handl. 1939, 151, 1–45. [Google Scholar]
- Reiser, H.; Kutiel, H. Rainfall uncertainty in the Mediterranean: Time series, uncertainty, and extremes. Theor. Appl. Climatol. 2011, 104, 357–375. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Purkey, D.R.; Escobar Arias, M.I.; Mehta, V.K.; Forni, L.; Depsky, N.J.; Yates, D.N.; Stevenson, W.N. A philosophical justification for a novel analysis-supported, stakeholder-driven participatory process for water resources planning and decision making. Water 2018, 10, 1009. [Google Scholar] [CrossRef]
- Yunbiao, W.; Lianqing, X. Nonstationary modelling of annual discharge over the Tarim River headstream catchment, China. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022149. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Wang, B.; Tan, S.; Feng, P. Nonstationary flood frequency analysis using univariate and bivariate time-varying models based on GAMLSS. Water 2018, 10, 819. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Hurst-Kolmogorov dynamics and uncertainty. J. Am. Water Resour. Assoc. 2011, 47, 481–495. [Google Scholar] [CrossRef]
- Lins, H.F.; Cohn, T.A. Stationarity: Wanted dead or alive? J. Am. Water Resour. Assoc. 2011, 47, 475–480. [Google Scholar] [CrossRef]
- Matalas, N.C. Comment on the announced death of stationarity. J. Water Resour. Plan. Manag. 2012, 138, 311–312. [Google Scholar] [CrossRef]
Rain Gauge | MAP (mm) | Duration | N (-) | Elevation (m a.s.l.) | Heavy Rainfall Events from 1 January 2000 (mm) | Heavy Rainfall Events before 1 January 2000 (mm) |
---|---|---|---|---|---|---|
Vibo Valentia (ID code 2800) | 951.1 | 1 h | 61 | 498 | 130.2 (3 July 2006) | |
1 day | 94 | 202.6 (3 July 2006) | 325.1 (2 December 1938) | |||
Chiaravalle Centrale (ID code 1960) | 1439.7 | 1 h | 67 | 714 | 84.2 (10 September 2000) | |
114.8 (25 September 2009) | ||||||
24 h | 70 | 359.6 (9 September 2000) | 416 (25 November 1993) 512 (16 October 1951) 432.4 (21 November 1935) | |||
373.2 (31 October 2015) | ||||||
Santa Cristina d’Aspromonte (ID code 2540) | 1500.9 | 24 h | 44 | 510 | 271.6 (31 October 2015) | 279.2 (3 October 1996) |
398.7 (23 November 1959) | ||||||
637.9 (16 October 1951) | ||||||
388.1 (22 January 1946) | ||||||
Ardore Superiore (ID code 2210) | 928.7 | 1 h | 53 | 250 | 118.4 (30 September 2000) | |
98.6 (25–26 November 2016) | ||||||
24 h | 56 | 430.2 (29 September 2000) | 321.3 (17 October 1951) 325.6 (5 December 1933) | |||
321.4 (1 November 2015) | ||||||
362.4 (25–26 November 2016) | ||||||
Montalto Uffugo (ID code 1060) | 1393.7 | 24 h | 61 | 468 | 224.8 (12 December 2008) | |
Sant’Agata del Bianco (ID code 2270) | 1059.2 | 1 day | 86 | 380 | 370.4 (1 November 2015) 393 (25 November 2016) | |
Gioiosa Ionica (ID code 2160) | 899.1 | 3 h | 62 | 125 | 122.8 (25 November 2016) | 108.8 (22 September 1965) |
101.7 (3 November 1953) | ||||||
114.1 (17 October 1951) | ||||||
111.3 (21 November 1935) | ||||||
105.1 (10 November 1932) | ||||||
Platì (ID code 2230) | 1775.9 | 24 h | 45 | 310 | 332 (1 November 2015) | 286.3 (21 October 1953) |
Serra San Bruno (ID code 1980) | 1779.7 | 1 h | 71 | 790 | 100.4 (19 November 2013) | 95.4 (12 September 1958) |
90 (22 November 1935) | ||||||
Albi (ID code 1830) | 1251.1 | 3 h | 57 | 710 | 172.8 (19 November 2013) | 127.7 (9 September 1939) |
109.3 (21 October 1935) | ||||||
Cittanova (ID code 2600) | 1463.7 | 6 h | 70 | 407 | 307.4 (22 November 2011) | 185.1 (18 October 1951) |
Parameter | Value | Regional Level |
---|---|---|
0.449 | 1st (the whole Calabria region) | |
2.168 | ||
36 | 2nd (Tyrrhenian sub-region ) | |
16.7 | 2nd (Central sub-region) | |
10.3 | 2nd (Ionian sub-region) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, D.L.; Galasso, L. Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy. Water 2018, 10, 1477. https://doi.org/10.3390/w10101477
De Luca DL, Galasso L. Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy. Water. 2018; 10(10):1477. https://doi.org/10.3390/w10101477
Chicago/Turabian StyleDe Luca, Davide Luciano, and Luciano Galasso. 2018. "Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy" Water 10, no. 10: 1477. https://doi.org/10.3390/w10101477
APA StyleDe Luca, D. L., & Galasso, L. (2018). Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy. Water, 10(10), 1477. https://doi.org/10.3390/w10101477