Pain-Associated Transcriptome Changes in Synovium of Knee Osteoarthritis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information
2.2. Sample Collection and Total RNA Extraction
2.3. Next Generation Sequencing
2.4. Data Analysis
3. Results
3.1. Protein-Coding Transcriptome and Gene Enrichment Analysis
3.2. Noncoding Transcriptome
3.3. Deconvolution Analysis of Harvested Synovial Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- March, L.M.; Bachmeier, C.J. Economics of osteoarthritis: A global perspective. Baillieres Clin. Rheumatol. 1997, 11, 817–834. [Google Scholar] [CrossRef]
- White, D.K.; Master, H. Patient-reported measures of physical function in knee osteoarthritis. Rheum. Dis. Clin. 2016, 42, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. What’s new in osteoarthritis pathogenesis? Intern. Med. J. 2016, 46, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; McDougall, J.J.; Keefe, F.J. The symptoms of osteoarthritis and the genesis of pain. Rheum. Dis. Clin. 2008, 34, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Kidd, B.L. Osteoarthritis and joint pain. Pain 2006, 123, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Dieppe, P.A.; Lohmander, L.S. Pathogenesis and management of pain in osteoarthritis. Lancet 2005, 365, 965–973. [Google Scholar] [CrossRef]
- Pincus, T.; Block, J.A. Pain and radiographic damage in osteoarthritis. BMJ 2009, 339, b2802. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Nassikas, N.J.; Clauw, D.J. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res. Ther. 2011, 13, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaible, H.G.; Richter, F.; Ebersberger, A.; Boettger, M.K.; Vanegas, H.; Natura, G.; Vazquez, E.; Segond von Banchet, G. Joint pain. Exp. Brain Res. 2009, 196, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.H.; Chang, Y.C.; Jean, Y.H. Excitatory amino acid glutamate: Role in peripheral nociceptive transduction and inflammation in experimental and clinical osteoarthritis. Osteoarthr. Cartil. 2015, 23, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Kidd, B.L.; Photiou, A.; Inglis, J.J. The role of inflammatory mediators on nociception and pain in arthritis. In Novartis Foundation Symposium; John Wiley: Chichester; NY, USA, 2004; Volume 260, pp. 122–133. [Google Scholar]
- Sellam, J.; Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 2010, 6, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.; Aeschlimann, A.; Jordan, S.; Gay, R.; Gay, S.; Sprott, H. ATP induced brain-derived neurotrophic factor expression and release from osteoarthritis synovial fibroblasts is mediated by purinergic receptor p2x4. PLoS ONE 2012, 7, e36693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratus, A.; Aeschlimann, A.; Russo, G.; Sprott, H. Candidate gene approach in genetic epidemiological studies of osteoarthritis-related pain. Pain 2014, 155, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Servant, N.; Toedling, J.; Sarazin, A.; Marchais, A.; Duvernois-Berthet, E.; Cognat, V.; Colot, V.; Voinnet, O.; Heard, E.; et al. ncPRO-seq: A tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics 2012, 28, 3147–3149. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S.; Saini, H.K.; van Dongen, S.; Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, E.P.; Burge, S.W.; Bateman, A.; Daub, J.; Eberhardt, R.Y.; Eddy, S.R.; Floden, E.W.; Gardner, P.P.; Jones, T.A.; Tate, J.; et al. Rfam 12.0: Updates to the RNA families database. Nucleic Acids Res. 2015, 43, D130–D137. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar]
- Mi, H.; Poudel, S.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Panther version 10: Expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016, 44, D336–D342. [Google Scholar] [CrossRef] [PubMed]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, W.; Donlin, L.T.; Butler, A.; Rozo, C.; Bracken, B.; Rashidfarrokhi, A.; Goodman, S.M.; Ivashkiv, L.B.; Bykerk, V.P.; Orange, D.E.; et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 2018, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS pain), Mcgill Pain Questionnaire (MPQ), Short-Form Mcgill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. (Hoboken) 2011, 63 (Suppl. 11), S240–S252. [Google Scholar] [PubMed]
- Karabis, A.; Nikolakopoulos, S.; Pandhi, S.; Papadimitropoulou, K.; Nixon, R.; Chaves, R.L.; Moore, R.A. High correlation of VAS pain scores after 2 and 6 weeks of treatment with VAS pain scores at 12 weeks in randomised controlled trials in rheumatoid arthritis and osteoarthritis: Meta-analysis and implications. Arthritis Res. Ther. 2016, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, G.; Mitsi, V.; Purushothaman, I.; Gaspari, S.; Avrampou, K.; Loh, Y.E.; Shen, L.; Zachariou, V. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci. Signal. 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.X.; Cassone, C.G.; Luebbert, C.; Liu, Q.Y. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer’s brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells. Mol. Neurodegener. 2011, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cawley, N.X.; Loh, Y.P. Carboxypeptidase E (NF-α1): A new trophic factor in neuroprotection. Neurosci. Bull. 2014, 30, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.D.; Manadas, B.J.; Melo, C.V.; Gomes, J.R.; Mendes, C.S.; Graos, M.M.; Carvalho, R.F.; Carvalho, A.P.; Duarte, C.B. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005, 12, 1329–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson-Farley, N.N.; Patel, K.; Kim, D.; Cowen, D.S. Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Res. 2007, 1154, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, I.; Safieddine, S.; Nouvian, R.; Grati, M.; Simmler, M.C.; Bahloul, A.; Perfettini, I.; Le Gall, M.; Rostaing, P.; Hamard, G.; et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006, 127, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Rahman, M.N.; Guo, J.; Roy, N.; Xue, L.; Cahill, C.M.; Zhang, S.; Jia, Z. Function coupling of otoferlin with GAD65 acts to modulate GABAergic activity. J. Mol. Cell Biol. 2015, 7, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederquist, G.Y.; Luchniak, A.; Tischfield, M.A.; Peeva, M.; Song, Y.; Menezes, M.P.; Chan, W.M.; Andrews, C.; Chew, S.; Jamieson, R.V.; et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum. Mol. Genet. 2012, 21, 5484–5499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipina, T.V.; Prasad, T.; Yokomaku, D.; Luo, L.; Connor, S.A.; Kawabe, H.; Wang, Y.T.; Brose, N.; Roder, J.C.; Craig, A.M. Cognitive deficits in Calsyntenin-2-deficient mice associated with reduced GABAergic transmission. Neuropsychopharmacology 2016, 41, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Pannecoeck, R.; Serruys, D.; Benmeridja, L.; Delanghe, J.R.; van Geel, N.; Speeckaert, R.; Speeckaert, M.M. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit. Rev. Clin. Lab. Sci. 2015, 52, 284–300. [Google Scholar] [CrossRef] [PubMed]
- Stepp, M.W.; Folz, R.J.; Yu, J.; Zelko, I.N. The c10orf10 gene product is a new link between oxidative stress and autophagy. Biochim. Biophys. Acta 2014, 1843, 1076–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Gibson, G.; Kim, J.S.; Kroin, J.; Xu, S.; van Wijnen, A.J.; Im, H.J. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 2011, 480, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient No. | Sex | Age | Nationality | Smoking Status | Drug Therapy | Classes of Medicaments | Recommended Procedure for Surgery | Degree of Radiographic Changes in the Knee 3 | Current Laboratory Data: CRP 4/BSG 5 | Earlier Surgery Procedures | BMI 6 | VAS 7 | Pain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
012 | F 1 | 76 | Swiss | non | Pantozol, Pravastatin, Torasemid, Triatec | 1, 5, 3, 4 | TKA 2 | 4 | 8.3/18 | Meniscus | 27.5 | 8 | high |
013 | F | 64 | Italian | non | Co-Aprovel | 5 | TKA | 4 | 8.5/50 | non | 31.8 | 3 | low |
014 | F | 74 | Swiss | non | non | non | TKA | 4 | 1.2/20 | Meniscus | 23.4 | 0 | low |
015 | F | 75 | Swiss | non | Lithium | 6 | TKA | 4 | 0.5/12 | non | 23.7 | 1 | low |
016 | F | 62 | Swiss | non | Metoprolol, Sirdalud, Femeston, Pantozol | 2, 10, 7, 1 | TKA | 3 | 4.6/14 | non | 23.2 | 9 | high |
017 | F | 70 | German | non | Fludex | 3 | TKA | 4 | -/- | non | 43.7 | 8 | high |
018 | F | 78 | Swiss | non | Atenolol, Co-Epril, Madopar, Metformin, Simcora, Tiatral, Zanidip, Tramadol | 2, 4, 6, 8, 5, 10 | TKA | 4 | 7.7/22 | non | 35.5 | 7 | high |
019 | F | 67 | Swiss | non | Tilur, Zolpidem | 10, 6 | TKA | 4 | 1.1/7 | non | 25.4 | 8 | high |
021 | F | 65 | Swiss | non | Aspirin, Surmontil | 10, 6 | TKA | 4 | 5.4/17 | Arthroscopy | 32 | 0–3.5 8 | low |
022 | F | 77 | Italian | non | Aspirin, Calcimagon, Magnesium, Pantozol, Pemzek | 10, 9, 1, 4 | TKA | 4 | 9.2/29 | non | 34.2 | 2 | low |
No. | Gene ID | Gene Name | Description | Type | log2 Fold Change | p Value | Adjusted p Value |
---|---|---|---|---|---|---|---|
1 | ENSG00000256391 | SDIM1 | stress responsive DNAJB4 interacting membrane protein 1 | protein_coding | 2.913 | 2.83 × 10−10 | 4.66 × 10−6 |
2 | ENSG00000115155 | OTOF | otoferlin | protein_coding | 3.42 | 7.70 × 10−8 | 0.000634 |
3 | ENSG00000109472 | CPE | carboxypeptidase E | protein_coding | 1.107 | 2.13 × 10−7 | 0.001172 |
4 | ENSG00000138944 | KIAA1644 | KIAA1644 | protein_coding | 1.184 | 1.93 × 10−6 | 0.007935 |
5 | ENSG00000158258 | CLSTN2 | calsyntenin 2 | protein_coding | 1.214 | 6.48 × 10−6 | 0.01909 |
6 | ENSG00000131471 | AOC3 | amine oxidase, copper containing 3 | protein_coding | 1.243 | 8.55 × 10−6 | 0.01909 |
7 | ENSG00000141068 | KSR1 | kinase suppressor of ras 1 | protein_coding | 0.8648 | 9.15 × 10−6 | 0.01909 |
8 | ENSG00000108551 | RASD1 | RAS, dexamethasone-induced 1 | protein_coding | 1.605 | 1.04 × 10−5 | 0.01909 |
9 | ENSG00000042062 | FAM65C | family with sequence similarity 65, member C | protein_coding | 1.655 | 1.04 × 10−5 | 0.01909 |
10 | ENSG00000138031 | ADCY3 | adenylate cyclase 3 | protein_coding | 0.8997 | 1.29 × 10−5 | 0.02012 |
11 | ENSG00000120875 | DUSP4 | dual specificity phosphatase 4 | protein_coding | 1.297 | 1.42 × 10−5 | 0.02012 |
12 | ENSG00000113448 | PDE4D | phosphodiesterase 4D, cAMP-specific | protein_coding | 1.083 | 1.47 × 10−5 | 0.02012 |
13 | ENSG00000172014 | ANKRD20A4 | ankyrin repeat domain 20 family, member A4 | protein_coding | −2.373 | 1.70 × 10−5 | 0.02151 |
14 | ENSG00000221866 | PLXNA4 | plexin A4 | protein_coding | 1.232 | 2.43 × 10−5 | 0.02859 |
15 | ENSG00000213494 | CCL14 | chemokine (C-C motif) ligand 14 | protein_coding | 1.212 | 3.10 × 10−5 | 0.03001 |
16 | ENSG00000198947 | DMD | dystrophin | protein_coding | 0.9328 | 3.29 × 10−5 | 0.03006 |
17 | ENSG00000166106 | ADAMTS15 | ADAM metallopeptidase with thrombospondin type 1 motif, 15 | protein_coding | 1.038 | 4.98 × 10−5 | 0.0432 |
18 | ENSG00000135744 | AGT | angiotensinogen (serpin peptidase inhibitor, clade A, member 8) | protein_coding | 1.732 | 6.87 × 10−5 | 0.05489 |
19 | ENSG00000129946 | SHC2 | SHC (Src homology 2 domain containing) transforming protein 2 | protein_coding | 1.574 | 7.00 × 10−5 | 0.05489 |
20 | ENSG00000104332 | SFRP1 | secreted frizzled-related protein 1 | protein_coding | 0.953 | 7.41 × 10−5 | 0.05551 |
21 | ENSG00000137285 | TUBB2B | tubulin, beta 2B class IIb | protein_coding | 1.592 | 8.44 × 10−5 | 0.06047 |
22 | ENSG00000163431 | LMOD1 | leiomodin 1 (smooth muscle) | protein_coding | 1.02 | 0.000143 | 0.09593 |
23 | ENSG00000103196 | CRISPLD2 | cysteine-rich secretory protein LCCL domain containing 2 | protein_coding | 1.631 | 0.000146 | 0.09593 |
24 | ENSG00000065320 | NTN1 | netrin 1 | protein_coding | 1.48 | 0.000154 | 0.09774 |
25 | ENSG00000163661 | PTX3 | pentraxin 3, long | protein_coding | −2.075 | 0.000174 | 0.1009 |
26 | ENSG00000144229 | THSD7B | thrombospondin, type I, domain containing 7B | protein_coding | 1.88 | 0.000181 | 0.1009 |
27 | ENSG00000165507 | C10orf10 | chromosome 10 open reading frame 10 | protein_coding | 1.002 | 0.000185 | 0.1009 |
28 | ENSG00000017427 | IGF1 | insulin-like growth factor 1 (somatomedin C) | protein_coding | 1.159 | 0.000195 | 0.1009 |
29 | ENSG00000148053 | NTRK2 | neurotrophic tyrosine kinase, receptor, type 2 | protein_coding | 1.176 | 0.000195 | 0.1009 |
30 | ENSG00000162878 | PKDCC | protein kinase domain containing, cytoplasmic | protein_coding | 0.9649 | 0.000196 | 0.1009 |
31 | ENSG00000171819 | ANGPTL7 | angiopoietin-like 7 | protein_coding | 1.825 | 0.000204 | 0.1017 |
32 | ENSG00000111879 | FAM184A | family with sequence similarity 184, member A | protein_coding | 1.44 | 0.000219 | 0.1061 |
33 | ENSG00000266037 | RN7SL3 | RNA, 7SL, cytoplasmic 3 | other | −4.882 | 2.72 × 10−5 | 0.02982 |
34 | ENSG00000230847 | RP11-195E2.1 | pseudogene | −2.975 | 2.90 × 10−5 | 0.02985 |
Gene Ontology (GO) Term | Term ID | Ontology | Gene Set Size | Differentially Expressed Genes in Set | Expected Proportion | Fold Enrichment | Direction | Adjusted p Value |
---|---|---|---|---|---|---|---|---|
Peripheral nervous system development | GO:0007422 | BP 1 | 74 | 4 | 0.11 | >5 | Up-regulation | 3.62 × 10−2 |
Second-messenger-mediated signalling | GO:0019932 | BP | 149 | 5 | 0.22 | >5 | Up-regulation | 2.13 × 10−2 |
Regulation of MAPK cascade | GO:0043408 | BP | 771 | 9 | 1.15 | >5 | Up-regulation | 9.79 × 10−3 |
Regulation of protein phosphorylation | GO:0001932 | BP | 1330 | 11 | 1.98 | >5 | Up-regulation | 1.44 × 10−2 |
Regulation of phosphorylation | GO:0042325 | BP | 1419 | 11 | 2.11 | >5 | Up-regulation | 2.70 × 10−2 |
Anatomical structure morphogenesis | GO:0009653 | BP | 2341 | 14 | 3.49 | 4.02 | Up-regulation | 1.64 × 10−2 |
Gene Ontology | SDIM1 | OTOF | CPE | KIAA1644 | CLSTN2 | AOC3 | KSR1 | RASD1 | FAM65C | ADCY3 | DUSP4 | PDE4D | ANKRD20A4 | PLXNA4 | CCL14 | DMD | ADAMTS15 | AGT | SHC2 | SFRP1 | TUBB2B | LMOD1 | CRISPLD2 | NTN1 | PTX3 | THSD7B | C10orf10 | IGF1 | NTRK2 | PKDCC | ANGPTL7 | FAM184A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peripheral nervous system development | x | x | x | x | ||||||||||||||||||||||||||||
Second-messenger-mediated signaling | x | x | x | x | x | |||||||||||||||||||||||||||
Regulation of MAPK cascade | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||
Regulation of protein phosphorylation | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Regulation of phosphorylation | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||
Anatomical structure morphogenesis | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
Unclassified | x | x | x | x |
Gene Set | Reactome ID | Description | Genes in Overlap | p Value | Adjusted p Value |
---|---|---|---|---|---|
NGF signaling via TRKA from the plasma membrane | R-HSA-187037 | Genes involved in NGF signaling via TRKA from the plasma membrane | 4 | 2.23 × 10−6 | 1.92 × 10−3 |
Signaling by NGF | R-HSA-166520 | Genes involved in Signaling by NGF | 4 | 1.38 × 10−5 | 5.92 × 10−3 |
No. | Small RNA ID | logFC | p Value | FDR |
---|---|---|---|---|
1 | hsa-miR-146a-3p | −3.0904 | 0.0021 | 0.9161 |
2 | hsa-miR-3690 | −2.0150 | 0.0061 | 0.9161 |
3 | hsa-mir-6087 | −1.0671 | 0.0094 | 0.9161 |
4 | hsa-mir-3690-2 | −1.9481 | 0.0105 | 0.9161 |
5 | hsa-mir-3690-1 | −1.9481 | 0.0105 | 0.9161 |
6 | hsa-miR-483-3p | 1.3561 | 0.0108 | 0.9161 |
7 | hsa-miR-27a-5p | −1.3216 | 0.0110 | 0.9161 |
8 | hsa-mir-579 | 1.1104 | 0.0136 | 0.9161 |
9 | hsa-mir-133a-2 | 1.2010 | 0.0176 | 0.9161 |
10 | hsa-miR-219a-1-3p | −1.4028 | 0.0188 | 0.9161 |
11 | hsa-miR-133a-5p | 1.4021 | 0.0191 | 0.9161 |
12 | hsa-miR-493-3p | −1.3788 | 0.0195 | 0.9161 |
13 | hsa-mir-133a-1 | 1.2001 | 0.0200 | 0.9161 |
14 | hsa-miR-1245a | −1.3254 | 0.0214 | 0.9161 |
15 | hsa-miR-23a-5p | −1.3435 | 0.0217 | 0.9161 |
16 | hsa-miR-133a-3p | 1.1719 | 0.0219 | 0.9161 |
17 | hsa-mir-7704 | −1.0055 | 0.0250 | 0.9161 |
18 | hsa-miR-550a-3p | 1.2909 | 0.0272 | 0.9161 |
19 | hsa-miR-4508 | −1.5594 | 0.0285 | 0.9161 |
20 | hsa-mir-4508 | −1.5594 | 0.0285 | 0.9161 |
21 | hsa-miR-579-5p | 1.2289 | 0.0339 | 0.9161 |
22 | hsa-miR-215-5p | 1.1979 | 0.0363 | 0.9161 |
23 | hsa-miR-514a-3p | 1.4606 | 0.0374 | 0.9161 |
24 | hsa-mir-215 | 1.1756 | 0.0390 | 0.9161 |
25 | hsa-mir-6818 | −1.2591 | 0.0400 | 0.9161 |
26 | hsa-mir-514a-3 | 1.4891 | 0.0413 | 0.9161 |
27 | hsa-mir-514a-1 | 1.4891 | 0.0413 | 0.9161 |
28 | hsa-mir-514a-2 | 1.4891 | 0.0413 | 0.9161 |
29 | hsa-mir-3651 | −1.6337 | 0.0423 | 0.9161 |
30 | hsa-mir-1294 | −1.0721 | 0.0426 | 0.9161 |
31 | hsa-mir-135b | −1.6181 | 0.0428 | 0.9161 |
32 | hsa-miR-135b-5p | −1.6110 | 0.0433 | 0.9161 |
33 | SNORA3 | −1.1678 | 0.0450 | 0.9161 |
34 | hsa-miR-1294 | −1.0974 | 0.0472 | 0.9161 |
35 | hsa-mir-7854 | −1.2553 | 0.0473 | 0.9161 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratus-Neuenschwander, A.; Castro-Giner, F.; Frank-Bertoncelj, M.; Aluri, S.; Fucentese, S.F.; Schlapbach, R.; Sprott, H. Pain-Associated Transcriptome Changes in Synovium of Knee Osteoarthritis Patients. Genes 2018, 9, 338. https://doi.org/10.3390/genes9070338
Bratus-Neuenschwander A, Castro-Giner F, Frank-Bertoncelj M, Aluri S, Fucentese SF, Schlapbach R, Sprott H. Pain-Associated Transcriptome Changes in Synovium of Knee Osteoarthritis Patients. Genes. 2018; 9(7):338. https://doi.org/10.3390/genes9070338
Chicago/Turabian StyleBratus-Neuenschwander, Anna, Francesc Castro-Giner, Mojca Frank-Bertoncelj, Sirisha Aluri, Sandro F. Fucentese, Ralph Schlapbach, and Haiko Sprott. 2018. "Pain-Associated Transcriptome Changes in Synovium of Knee Osteoarthritis Patients" Genes 9, no. 7: 338. https://doi.org/10.3390/genes9070338
APA StyleBratus-Neuenschwander, A., Castro-Giner, F., Frank-Bertoncelj, M., Aluri, S., Fucentese, S. F., Schlapbach, R., & Sprott, H. (2018). Pain-Associated Transcriptome Changes in Synovium of Knee Osteoarthritis Patients. Genes, 9(7), 338. https://doi.org/10.3390/genes9070338