The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis
Abstract
:1. Introduction
2. DNA Methylation in Fetal Development
3. DNA Methylation Biomarkers Discovery
3.1. Sodium Bisulfite-Based Approaches
3.2. Restriction Enzyme-Based Approaches
3.3. Methylated DNA Immunoprecipitation-Based Approaches
4. Implementation of Methyl-Biomarkers in NIPT
Assay | Technology | Sample size | Sensitivity/Specificity (%) | Advantages | Disadvantages | Reproduced by others |
---|---|---|---|---|---|---|
EAR on chromosome 18 [67] | Sodium bisulfite, digital PCR | 2 normal 2 trisomy 18 | Not defined/not applicable population-wide | Applicable irrespective of gender | Requires informative SNP, depends on the bisulfite conversion performance | No |
EGG on chromosome 21 using ZFY [15] | * COBRA, digital PCR | 24 normal 5 trisomy 21 | 95.8% specificity 100% sensitivity | SNP-free assay | Applicable only to male pregnancies, depends on the digestion and bisulfite conversion efficiency | No |
EGG on chromosome 18 using ZFY [66] | * COBRA, digital PCR | 27 normal 9 Trisomy 18 | 96.3% specificity 88.9% sensitivity | SNP-free assay | Applicable only to male pregnancies, depends on the digestion and bisulfite conversion efficiency | No |
EGG on chromosome 21 using TMED8 [68] | ** MRED digestion, digital PCR | 33 normal 14 trisomy 21 | Variable depending on the fetal allele | Applicable irrespective of gender | Requires informative SNP, applicable only to male pregnancies, depends on the digestion efficiency | No |
Fetal-specific DNA methylation ratio on chromosome 21 (1st study) [69] | *** MeDIP, real-time qPCR | 40 normal 40 trisomy 21 | 100% specificity 100% sensitivity | Applicable irrespective of gender and SNPs | Depends on MeDIP performance | Yes [70,71] |
Fetal-specific DNA methylation ratio on chromosome 21 (2nd study) [72] | *** MeDIP, real-time qPCR | 125 normal 50 trisomy 21 | 99.2% specificity 100% sensitivity | Applicable irrespective of gender and SNPs | Depends on MeDIP performance | No |
Bisulfite sequencing [10] | Sodium bisulfite, next generation sequencing | 7 normal 5 trisomy 21 | 100% specificity 100% sensitivity | Applicable irrespective of gender and SNPs | Depends on bisulfite conversion efficiency | No |
5. Evaluating the Efficiency of Methylation Assays
Methylation assay | Advantages | Disadvantages | Analytical tool used for NIPT |
---|---|---|---|
Sodium bisulfite | Not sensitive to sample impurities, methylation analysis at the base pair level | DNA degradation (>90%), 100% conversion is rarely achieved | * MSP, microarrays, Digital PCR, ** COBRA, *** NGS |
Restriction enzyme digestion | Easy to perform and low cost | Sensitive to sample impurities, requires high amount of starting DNA, applicable to a limited number of DNA sequences | ** COBRA, digital PCR |
**** MeDIP | Ideal for investigating low CG content regions, low cost assay, not sensitive to sample impurities, can be applied with low starting DNA amounts | Depends on antibody efficiency and ideal combination of affinity reagents | Real time-qPCR, microarrays |
6. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Lo, Y.M.; Tein, M.S.; Lau, T.K.; Haines, C.J.; Leung, T.N.; Poon, P.M.; Wainscoat, J.S.; Johnson, P.J.; Chang, A.M.; Hjelm, N.M. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 1998, 62, 768–775. [Google Scholar]
- Lun, F.M.; Chiu, R.W.; Chan, A.K.C.; Yeung Leung, T.; Kin Lau, T.; Lo, D.Y.M. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 2008, 54, 1664–1672. [Google Scholar] [CrossRef]
- Partsalis, T.; Chan, L.Y.; Hurworth, M.; Willers, C.; Pavlos, N.; Kumta, N.; Wood, D.; Xu, J.; Kumta, S.; Lo, Y.M.; et al. Evidence of circulating donor genetic material in bone allotransplantation. Int. J. Mol. Med. 2006, 17, 1151–1155. [Google Scholar]
- Bianchi, D.W.; Shuber, A.P.; DeMaria, M.A.; Fougner, A.C.; Klinger, K.W. Fetal cells in maternal blood: determination of purity and yield by quantitative polymerase chain reaction. Am. J. Obstet. Gynecol. 1994, 171, 922–926. [Google Scholar] [CrossRef]
- Lo, Y.M.; Lau, T.K.; Chan, L.Y.; Leung, T.N.; Chang, A.M. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin. Chem. 2000, 46, 1301–1309. [Google Scholar]
- Alberry, M.; Maddocks, D.; Jones, M.; Abdel Hadi, M.; Abdel-Fattah, S.; Avent, N.; Soothill, P.W. Free fetal DNA in maternal plasma in anembryonic pregnancies: Confirmation that the origin is the trophoblast. Prenat. Diagn. 2007, 27, 415–418. [Google Scholar] [CrossRef]
- Tjoa, M.L.; Cindrova-Davies, T.; Spasic-Boskovic, O.; Bianchi, D.W.; Burton, G.J. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol. 2006, 169, 400–404. [Google Scholar] [CrossRef]
- Smid, M.; Galbiati, S.; Lojacono, A.; Valsecchi, L.; Platto, C.; Cavoretto, P.; Calza, S.; Ferrari, A.; Ferrari, M.; Cremonesi, L. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat. Diagn. 2006, 26, 785–790. [Google Scholar] [CrossRef]
- Lun, F.M.; Chiu, R.W.; Sun, K.; Leung, T.Y.; Jiang, P.; Chan, K.C.; Sun, H.; Lo, Y.M. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin. Chem. 2013, 59, 1583–1594. [Google Scholar]
- Lo, Y.M.; Zhang, J.; Leung, T.N.; Lau, T.K.; Chang, A.M.; Hjelm, N.M. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 1999, 64, 218–224. [Google Scholar] [CrossRef]
- Chim, S.S.; Tong, Y.K.; Chiu, R.W.; Lau, T.K.; Leung, T.N.; Chan, L.Y.; Oudejans, C.B.; Ding, C.; Lo, Y.M. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc. Natl. Acad. Sci. USA 2005, 102, 14753–14758. [Google Scholar] [CrossRef]
- Tsumita, T.; Iwanaga, M. Fate of injected deoxyribonucleic acid in mice. Nature 1963, 198, 1088–1089. [Google Scholar] [CrossRef]
- Emlen, W.; Mannik, M. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J. Exp. Med. 1978, 147, 684–699. [Google Scholar] [CrossRef]
- Tong, Y.K.; Jin, S.; Chiu, R.W.; Ding, C.; Chan, K.C.; Leung, T.Y.; Yu, L.; Lau, T.K.; Lo, Y.M. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach. Clin. Chem. 2010, 56, 90–98. [Google Scholar] [CrossRef]
- Smith, S.C.; Baker, P.N.; Symonds, E.M. Placental apoptosis in normal human pregnancy. Am. J. Obstet. Gynecol. 1997, 177, 57–65. [Google Scholar] [CrossRef]
- Chan, K.C.; Zhang, J.; Hui, A.B.; Wong, N.; Lau, T.K.; Leung, T.N.; Lo, K.W.; Huang, D.W.; Lo, Y.M. Size distributions of maternal and fetal DNA in maternal plasma. Clin. Chem. 2004, 50, 88–92. [Google Scholar] [CrossRef]
- Li, Y.; Zimmermann, B.; Rusterholz, C.; Kang, A.; Holzgreve, W.; Hahn, S. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin. Chem. 2004, 50, 1002–1011. [Google Scholar] [CrossRef]
- Kimura, M.; Hara, M.; Itakura, A.; Sato, C.; Ikebuchi, K.; Ishihara, O. Fragment size analysis of free fetal DNA in maternal plasma using Y-STR loci and SRY gene amplification. Nagoya J. Med. Sci. 2011, 73, 129–135. [Google Scholar]
- Kyriakou, S.; Kypri, E.; Spyrou, C.; Tsaliki, E.; Velissariou, V.; Papageorgiou, E.A.; Patsalis, P.C. Variability of ffDNA in maternal plasma does not prevent correct classification of trisomy 21 using MeDIP-qPCR methodology. Prenat. Diagn. 2013, 33, 650–655. [Google Scholar] [CrossRef]
- Lo, Y.M.; Hjelm, N.M.; Fidler, C.; Sargent, I.L.; Murphy, M.F.; Chamberlain, P.F.; Poon, P.M.; Redman, C.W.; Wainscoat, J.S. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med. 1998, 339, 1734–1738. [Google Scholar] [CrossRef]
- Daniels, G.; Finning, K.; Martin, P.; Summers, J. Fetal blood group genotyping: Present and future. Ann. N. Y. Acad. Sci. 2006, 1075, 88–95. [Google Scholar]
- Papageorgiou, E.A.; Patsalis, P.C. Non-invasive prenatal diagnosis of aneuploidies: New technologies and clinical applications. Genome Med. 2012, 4, 46. [Google Scholar] [CrossRef]
- Chen, C.P.; Chern, S.R.; Wang, W. Fetal DNA analyzed in plasma from a mother’s three consecutive pregnancies to detect paternally inherited aneuploidy. Clin. Chem. 2001, 47, 937–939. [Google Scholar]
- Amicucci, P.; Gennarelli, M.; Novelli, G.; Dallapiccola, B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clin. Chem. 2000, 46, 301–302. [Google Scholar]
- Patsalis, P.C.; Tsaliki, E.; Koumbaris, G.; Karagrigoriou, A.; Velissariou, V.; Papageorgiou, E.A. A new non-invasive prenatal diagnosis of Down syndrome through epigenetic markers and real-time qPCR. Exp. Opin. Biol. Ther. 2012, 12, S155–S161. [Google Scholar] [CrossRef]
- Driscoll, D.A.; Gross, S. Clinical practice. Prenatal screening for aneuploidy. N. Engl. J. Med. 2009, 360, 2556–2562. [Google Scholar] [CrossRef]
- Chiu, R.W.; Lo, Y.M. Non-invasive prenatal diagnosis by fetal nucleic acid analysis in maternal plasma: the coming of age. Semin. Fetal Neonatal Med. 2011, 16, 88–93. [Google Scholar] [CrossRef]
- Raedle, J.; Trojan, J.; Brieger, A.; Weber, N.; Schafer, D.; Plotz, G.; Staib-Sebler, E.; Kriener, S.; Lorenz, M.; Zeuzem, S. Bethesda guidelines: Relation to microsatellite instability and MLH1 promoter methylation in patients with colorectal cancer. Ann. Intern. Med. 2001, 135, 566–576. [Google Scholar] [CrossRef]
- Bird, A.P. The relationship of DNA methylation to cancer. Cancer Surv. 1996, 28, 87–101. [Google Scholar]
- Monk, M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos. Trans. R. Soc. Lond. 1990, 326, 299–312. [Google Scholar] [CrossRef]
- Szyf, M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry 2005, 70, 533–549. [Google Scholar]
- Costello, J.F.; Plass, C. Methylation matters. J. Med. Genet. 2001, 38, 285–303. [Google Scholar] [CrossRef]
- Reik, W.; Dean, W.; Walter, J. Epigenetic reprogramming in mammalian development. Science 2001, 293, 1089–1093. [Google Scholar] [CrossRef]
- Kawai, J.; Hirotsune, S.; Hirose, K.; Fushiki, S.; Watanabe, S.; Hayashizaki, Y. Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res. 1993, 21, 5604–5608. [Google Scholar] [CrossRef]
- Watanabe, S.; Kawai, J.; Hirotsune, S.; Suzuki, H.; Hirose, K.; Taga, C.; Ozawa, N.; Fushiki, S.; Hayashizaki, Y. Accessibility to tissue-specific genes from methylation profiles of mouse brain genomic DNA. Electrophoresis 1995, 16, 218–226. [Google Scholar] [CrossRef]
- Shiota, K. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet. Genome Res. 2004, 105, 325–334. [Google Scholar] [CrossRef]
- Song, F.; Smith, J.F.; Kimura, M.T.; Morrow, A.D.; Matsuyama, T.; Nagase, H.; Held, W.A. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA 2005, 102, 3336–3341. [Google Scholar]
- Ching, T.T.; Maunakea, A.K.; Jun, P.; Hong, C.; Zardo, G.; Pinkel, D.; Albertson, D.G.; Fridlyand, J.; Mao, J.H.; Shchors, K.; et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat. Genet. 2005, 37, 645–651. [Google Scholar] [CrossRef]
- Song, F.; Mahmood, S.; Ghosh, S.; Liang, P.; Smiraglia, D.J.; Nagase, H.; Held, W.A. Tissue specific differentially methylated regions (TDMR): Changes in DNA methylation during development. Genomics 2009, 93, 130–139. [Google Scholar] [CrossRef]
- Eckhardt, F.; Lewin, J.; Cortese, R.; Rakyan, V.K.; Attwood, J.; Burger, M.; Burton, J.; Cox, T.V.; Davies, R.; Down, T.A.; et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 2006, 38, 1378–1385. [Google Scholar] [CrossRef]
- Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Paabo, S.; Rebhan, M.; Schubeler, D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007, 39, 457–466. [Google Scholar] [CrossRef]
- Illingworth, R.; Kerr, A.; Desousa, D.; Jorgensen, H.; Ellis, P.; Stalker, J.; Jackson, D.; Clee, C.; Plumb, R.; Rogers, J.; et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008, 6, e22. [Google Scholar] [CrossRef]
- Rakyan, V.K.; Down, T.A.; Thorne, N.P.; Flicek, P.; Kulesha, E.; Graf, S.; Tomazou, E.M.; Backdahl, L.; Johnson, N.; Herberth, M.; et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008, 18, 1518–1529. [Google Scholar] [CrossRef]
- Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005, 37, 853–862. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef]
- Esteller, M.; Sanchez-Cespedes, M.; Rosell, R.; Sidransky, D.; Baylin, S.B.; Herman, J.G. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999, 59, 67–70. [Google Scholar]
- Lo, Y.M.; Wong, I.H.; Zhang, J.; Tein, M.S.; Ng, M.H.; Hjelm, N.M. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res. 1999, 59, 3899–3903. [Google Scholar]
- Frommer, M.; McDonald, L.E.; Millar, D.S.; Collis, C.M.; Watt, F.; Grigg, G.W.; Molloy, P.L.; Paul, C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89, 1827–1831. [Google Scholar] [CrossRef]
- Herman, J.G.; Graff, J.R.; Myohanen, S.; Nelkin, B.D.; Baylin, S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 1996, 93, 9821–9826. [Google Scholar]
- Clark, S.J.; Harrison, J.; Paul, C.L.; Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994, 22, 2990–2997. [Google Scholar] [CrossRef]
- Poon, L.L.; Leung, T.N.; Lau, T.K.; Chow, K.C.; Lo, Y.M. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin. Chem. 2002, 48, 35–41. [Google Scholar]
- Gonzalgo, M.L.; Jones, P.A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997, 25, 2529–2531. [Google Scholar] [CrossRef]
- Chim, S.S.; Jin, S.; Lee, T.Y.; Lun, F.M.; Lee, W.S.; Chan, L.Y.; Jin, Y.; Yang, N.; Tong, Y.K.; Leung, T.Y.; et al. Systematic search for placental DNA-methylation markers on chromosome 21: Toward a maternal plasma-based epigenetic test for fetal trisomy 21. Clin. Chem. 2008, 54, 500–511. [Google Scholar] [CrossRef]
- Chan, K.C.; Ding, C.; Gerovassili, A.; Yeung, S.W.; Chiu, R.W.; Leung, T.N.; Lau, T.K.; Chim, S.S.; Chung, G.T.; Nicolaides, K.H.; et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 2006, 52, 2211–2218. [Google Scholar] [CrossRef]
- Xiong, Z.; Laird, P.W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997, 25, 2532–2534. [Google Scholar] [CrossRef]
- Papageorgiou, E.A.; Fiegler, H.; Rakyan, V.; Beck, S.; Hulten, M.; Lamnissou, K.; Carter, N.P.; Patsalis, P.C. Sites of differential DNA methylation between placenta and peripheral blood: Molecular markers for noninvasive prenatal diagnosis of aneuploidies. Am. J. Pathol. 2009, 174, 1609–1618. [Google Scholar] [CrossRef]
- Chu, T.; Handley, D.; Bunce, K.; Surti, U.; Hogge, W.A.; Peters, D.G. Structural and regulatory characterization of the placental epigenome at its maternal interface. PLoS One 2011, 6, e14723. [Google Scholar]
- Old, R.W.; Crea, F.; Puszyk, W.; Hulten, M.A. Candidate epigenetic biomarkers for non-invasive prenatal diagnosis of Down syndrome. Reprod. Biomed. Online 2007, 15, 227–235. [Google Scholar] [CrossRef]
- Chu, T.; Burke, B.; Bunce, K.; Surti, U.; Allen Hogge, W.; Peters, D.G. A microarray-based approach for the identification of epigenetic biomarkers for the noninvasive diagnosis of fetal disease. Prenat. Diagn. 2009, 29, 1020–1030. [Google Scholar] [CrossRef]
- Down, T.A.; Rakyan, V.K.; Turner, D.J.; Flicek, P.; Li, H.; Kulesha, E.; Graf, S.; Johnson, N.; Herrero, J.; Tomazou, E.M.; et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 2008, 26, 779–785. [Google Scholar] [CrossRef]
- Ruike, Y.; Imanaka, Y.; Sato, F.; Shimizu, K.; Tsujimoto, G. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 2010, 11, 137. [Google Scholar] [CrossRef]
- Feber, A.; Wilson, G.A.; Zhang, L.; Presneau, N.; Idowu, B.; Down, T.A.; Rakyan, V.K.; Noon, L.A.; Lloyd, A.C.; Stupka, E.; et al. Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res. 2011, 21, 515–524. [Google Scholar] [CrossRef]
- Taiwo, O.; Wilson, G.A.; Morris, T.; Seisenberger, S.; Reik, W.; Pearce, D.; Beck, S.; Butcher, L.M. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 2012, 7, 617–636. [Google Scholar] [CrossRef]
- Borgel, J.; Guibert, S.; Weber, M. Methylated DNA immunoprecipitation (MeDIP) from low amounts of cells. Methods Mol. Biol. 2012, 925, 149–158. [Google Scholar] [CrossRef]
- Tsui, D.W.Y.; Lam, Y.M.D.; Lee, W.S.; Leung, T.Y.; Lau, T.K.; Lau, E.T.; Tang, M.H.Y.; Akolekar, R.; Nicolaides, K.H.; Chiu, R.W.K.; et al. Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome. PLoS One 2010, 5, e15069. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.K.; Ding, C.; Chiu, R.W.; Gerovassili, A.; Chim, S.S.; Leung, T.Y.; Leung, T.N.; Lau, T.K.; Nicolaides, K.H.; Lo, Y.M. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: Theoretical and empirical considerations. Clin. Chem. 2006, 52, 2194–2202. [Google Scholar] [CrossRef]
- Tong, Y.K.; Chiu, R.W.; Akolekar, R.; Leung, T.Y.; Lau, T.K.; Nicolaides, K.H.; Lo, Y.M. Epigenetic-genetic chromosome dosage approach for fetal trisomy 21 detection using an autosomal genetic reference marker. PLoS One 2010, 5, e15244. [Google Scholar]
- Papageorgiou, E.A.; Karagrigoriou, A.; Tsaliki, E.; Velissariou, V.; Carter, N.P.; Patsalis, P.C. Fetal specific DNA methylation ratio permits non-invasive prenatal diagnosis of trisomy 21. Nat. Med. 2011, 17, 510–513. [Google Scholar] [CrossRef]
- Gorduza, E.V.; Popescu, R.; Caba, L.; Ivanov, I.; Martiniuc, V.; Nedelea, F.; Militaru, M.; Socolov, D.G. Prenatal diagnosis of 21 trisomy by quantification of methylated fetal DNA in maternal blood: Study on 10 pregnancies. Rev. Rom. Med. Lab. 2013, 21, 275–284. [Google Scholar]
- Qin, H.; Bonifacio, M.; McArthur, S.; McLennan, A.; Boogert, T.; Bowman, M. Comment on “MeDIP real-time qPCR of maternal peripheral blood reliably identifies trisomy 21”. Prenat. Diagn. 2013, 33, 403. [Google Scholar] [CrossRef]
- Tsaliki, E.; Papageorgiou, E.A.; Spyrou, C.; Koumbaris, G.; Kypri, E.; Kyriakou, S.; Sotiriou, C.; Touvana, E.; Keravnou, A.; Karagrigoriou, A.; et al. MeDIP real-time qPCR of maternal peripheral blood reliably identifies trisomy 21. Prenat. Diagn. 2012, 32, 996–1001. [Google Scholar] [CrossRef]
- Chiu, R.W.; Akolekar, R.; Zheng, Y.W.; Leung, T.Y.; Sun, H.; Chan, K.C.; Lun, F.M.; Go, A.T.; Lau, E.T.; To, W.W.; et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 2011, 342, c7401. [Google Scholar] [CrossRef] [Green Version]
- Ehrich, M.; Deciu, C.; Zwiefelhofer, T.; Tynan, J.A.; Cagasan, L.; Tim, R.; Lu, V.; McCullough, R.; McCarthy, E.; Nygren, A.O.; et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am. J. Obstet. Gynecol. 2011, 204, 205.e1–205.e11. [Google Scholar] [CrossRef]
- Palomaki, G.E.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Deciu, C.; Grody, W.W.; et al. DNA sequencing of maternal plasma to detect Down syndrome: An international clinical validation study. Genet. Med. 2011, 13, 913–920. [Google Scholar] [CrossRef]
- Chiu, R.W.; Chan, K.C.; Gao, Y.; Lau, V.Y.; Zheng, W.; Leung, T.Y.; Foo, C.H.; Xie, B.; Tsui, N.B.; Lun, F.M.; et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 2008, 105, 20458–20463. [Google Scholar] [CrossRef]
- Ladha, S. A new era of non-invasive prenatal genetic diagnosis: Exploiting fetal epigenetic differences. Clin. Genet. 2012, 81, 362–363. [Google Scholar] [CrossRef]
- Tong, Y.K.; Chiu, R.W.; Chan, K.C.; Leung, T.Y.; Lo, Y.M. Technical concerns about immunoprecipitation of methylated fetal DNA for noninvasive trisomy 21 diagnosis. Nat. Med. 2012, 18, 1327–1328; author reply 1328–1329. [Google Scholar] [CrossRef]
- Patsalis, P.C. Reply to: Technical concerns about immunoprecipitation of methylated fetal DNA for noninvasive trisomy 21 diagnosis. Nat. Med. 2012, 18, 1328–1329. [Google Scholar] [CrossRef]
- Fan, H.C.; Quake, S.R. Sensitivity of noninvasive prenatal detection of fetal aneuploidy from maternal plasma using shotgun sequencing is limited only by counting statistics. PLoS One 2010, 5, e10439. [Google Scholar] [CrossRef]
- Palomaki, G.E.; Deciu, C.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Grody, W.W.; et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet. Med. 2012, 14, 296–305. [Google Scholar] [CrossRef]
- Chen, E.Z.; Chiu, R.W.K.; Sun, H.; Akolekar, R.; Chan, K.C.A.; Leung, T.Y.; Jiang, P.; Zheng, Y.W.L.; Lun, F.M.F.; Chan, L.Y.S.; et al. Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing. PLoS One 2011, 6, e21791. [Google Scholar] [CrossRef] [Green Version]
- Aria Diagnostics, Inc. Available online: http://www.ariadx.com/ (accessed on 5 December 2013).
- SEQUENOM, Inc. Available online: http://www.sequenom.com/ (accessed on 5 December 2013).
- Verinata Health, Inc. Available online: http://www.verinata.com/ (accessed on 5 December 2013).
- Tsui, D.W.; Chiu, R.W.; Lo, Y.D. Epigenetic approaches for the detection of fetal DNA in maternal plasma. Chimerism 2010, 1, 30–35. [Google Scholar]
- Korshunova, Y.; Maloney, R.K.; Lakey, N.; Citek, R.W.; Bacher, B.; Budiman, A.; Ordway, J.M.; McCombie, W.R.; Leon, J.; Jeddeloh, J.A.; et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res. 2008, 18, 19–29. [Google Scholar]
- Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [CrossRef]
- Grunau, C.; Clark, S.J.; Rosenthal, A. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001, 29, E65. [Google Scholar] [CrossRef]
- Laird, P.W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 2010, 11, 191–203. [Google Scholar] [CrossRef]
- Fazzari, M.J.; Greally, J.M. Epigenomics: beyond CpG islands. Nat. Rev. Genet. 2004, 5, 446–455. [Google Scholar] [CrossRef]
- Nair, S.S.; Coolen, M.W.; Stirzaker, C.; Song, J.Z.; Statham, A.L.; Strbenac, D.; Robinson, M.D.; Clark, S.J. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 2011, 6, 34–44. [Google Scholar] [CrossRef]
- NIPD Genetics Ltd. Available online: http://www.nipd.com/ (accessed on 5 December 2013).
- Jin, S.; Lee, Y.K.; Lim, Y.C.; Zheng, Z.; Lin, X.M.; Ng, D.P.; Holbrook, J.D.; Law, H.Y.; Kwek, K.Y.; Yeo, G.S.; et al. Global DNA hypermethylation in down syndrome placenta. PLoS Genet. 2013, 9, e1003515. [Google Scholar]
- Stewart, F.J.; Panne, D.; Bickle, T.A.; Raleigh, E.A. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J. Mol. Biol. 2000, 298, 611–622. [Google Scholar] [CrossRef]
- Khulan, B.; Thompson, R.F.; Ye, K.; Fazzari, M.J.; Suzuki, M.; Stasiek, E.; Figueroa, M.E.; Glass, J.L.; Chen, Q.; Montagna, C.; et al. Comparative isoschizomer profiling of cytosine methylation: The HELP assay. Genome Res. 2006, 16, 1046–1055. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Papageorgiou, E.A.; Koumbaris, G.; Kypri, E.; Hadjidaniel, M.; Patsalis, P.C. The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis. Genes 2014, 5, 310-329. https://doi.org/10.3390/genes5020310
Papageorgiou EA, Koumbaris G, Kypri E, Hadjidaniel M, Patsalis PC. The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis. Genes. 2014; 5(2):310-329. https://doi.org/10.3390/genes5020310
Chicago/Turabian StylePapageorgiou, Elisavet A., George Koumbaris, Elena Kypri, Michael Hadjidaniel, and Philippos C. Patsalis. 2014. "The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis" Genes 5, no. 2: 310-329. https://doi.org/10.3390/genes5020310
APA StylePapageorgiou, E. A., Koumbaris, G., Kypri, E., Hadjidaniel, M., & Patsalis, P. C. (2014). The Epigenome View: An Effort towards Non-Invasive Prenatal Diagnosis. Genes, 5(2), 310-329. https://doi.org/10.3390/genes5020310