Phenotypic and Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance and Virulence in Pseudomonas aeruginosa Isolated from Patients with Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in a Croatian Intensive Care Unit
Abstract
1. Introduction
2. Materials and Methods
- •
- Definitions of nosocomial lower respiratory tract infections (LRTIs)
- •
- Cultivation and identification
- •
- Genomic DNA Extraction and Whole-Genome Sequencing
- •
- Genome Analysis
3. Results
3.1. Phenotypic Antimicrobial Susceptibility Testing (AST)
3.2. Whole-Genome Sequencing (WGS) Profiling and MLST Analysis
3.2.1. Multilocus Sequence Typing (MLST) and Phylogenetic Analysis
3.2.2. Antimicrobial Resistance Genomic Profile
3.2.3. Virulence Genomic Profile
3.2.4. Genetic Context of blaVIM-2 Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| VAP | Ventilator-associated pneumonia |
| VAT | Ventilator-associated tracheobronchitis |
| DTT | Difficult-to-treat |
| ICU | Intensive Care Unit |
| MALDI TOF MS | Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry |
| AST | Antimicrobial susceptibility testing |
| AMR | Antimicrobial resistance |
| WGS | Whole-genome sequencing |
| MLST | Multi-locus sequence typing |
| VIM-2 | Verona Integron-encoded Metallo-β-lactamase 2 |
| HGT | Horizontal Gene Transfer |
| HAI | Hospital-acquired infections |
| PDC | Psedomonas-derrived cephalosporinase |
| MBL | Metallo-β-lactamase |
| WHO | World Health Organisation |
| MDR | Multi-drug resistant |
| LRTI | Lower respiratory tract infection |
| CFU | Colony-forming units |
| BA | Blood agar |
| P/T | Piperacillin/tazobactam |
| CAZ | Ceftazidime |
| CEF | Cefepime |
| CAZ/A | Ceftazidime/avibactam |
| C/T | Ceftolozane/tazobactam |
| FDC | Cefiderocol |
| CIP | Ciprofloxacin |
| LEV | Levofloxacin |
| IMI | Imipenem |
| MEM | Meropenem |
| AMK | Amikacin |
| TBR | Tobramycin |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| DNA | Deoxyribonucleic Acid |
| qPCR | Quantitative Polymerase Chain Reaction |
| N | Nucleotides |
| ARG | Antimicrobial Resistance Gene |
| MAFFT | Multiple Alignment using Fast Fourier Transform |
| ST | Sequence Type |
| NCBI | National Center for Biotechnology Information |
| BLAST | Basic Local Alignment Search Tool |
| MIC | Minimum inhibitory concentrations |
| APH | Aminoglycoside Phosphotransferase |
| AAC | Aminoglycoside acetyl-transferase |
| ANT | Aminoglycoside nucleotid-transferase |
| RND | Resistant-nodulation-division |
| QS | Quorum Sensing |
References
- Mielko, K.A.; Jabłoński, S.J.; Milczewska, J.; Sands, D.; Łukaszewicz, M.; Młynarz, P. Metabolomic studies of Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2019, 35, 178. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018, 7, 212527. [Google Scholar] [CrossRef]
- Kim, C.; Oh, K.K.; Jothi, R.; Park, D.S. An innovative approach to decoding genetic variability in Pseudomonas aeruginosa via amino acid repeats and gene structure profiles. Sci. Rep. 2024, 14, 73031. [Google Scholar] [CrossRef]
- Rocha, A.J.; Barsottini, M.R.O.; Rocha, R.R.; Laurindo, M.V.; Moraes, F.L.L.M.; Rocha, S.L. Pseudomonas aeruginosa: Virulence factors and antibiotic resistance genes. Braz. Arch. Biol. Technol. 2019, 62, e19180504. [Google Scholar] [CrossRef]
- Hardie Boys, M.T.; Pletzer, D. A review of recently discovered mechanisms of cephalosporin resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2025, 66, 107527. [Google Scholar] [CrossRef]
- Le Terrier, C.; Raro, O.H.F.; Saad, A.M.; Nordmann, P.; Poirel, L. In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 277–284. [Google Scholar] [CrossRef]
- Zurita, J.; Sevillano, G.; Solís, M.B.; Paz y Miño, A.; Rizkallah Alves, B.; Changuan, J.; González, P. Pseudomonas aeruginosa epidemic high-risk clones and their association with multidrug-resistance. J. Glob. Antimicrob. Resist. 2024, 38, 332–338. [Google Scholar] [CrossRef]
- Jesudason, T. WHO publishes updated list of bacterial priority pathogens. Lancet Microbe 2024, 5, e100940. [Google Scholar] [CrossRef] [PubMed]
- Závora, J.; Adámková, V.; Studená, A.; Kroneislová, G. In vitro activity of cefiderocol and aztreonam/avibactam against Gram-negative non-fermenting bacteria: A new strategy against highly antibiotic-resistant infectious agents. Antibiotics 2025, 14, 762. [Google Scholar] [CrossRef] [PubMed]
- Flores Vega, V.R.; Partida Sánchez, S.; Ares, M.A.; Ortiz Navarrete, V.; Rosales Reyes, R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2024, 11, e41540. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Chen, X.; Zhang, J.; Lin, J. Meta-analysis of risk factors for infection by multi-drug-resistant organisms in intensive care unit patients. J. Hosp. Infect. 2025, 158, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Young, P.J.; Delaney, A.; Hills, T. Ventilator associated pneumonia: A problematic outcome for clinical trials. Crit. Care Resusc. 2023, 25, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Semet, C. The ongoing challenge of ventilator-associated pneumonia: Epidemiology, prevention, and risk factors for mortality in a secondary care hospital intensive care unit. Infect. Prev. Pract. 2023, 5, 100320. [Google Scholar] [CrossRef] [PubMed]
- Martin Loeches, I.; Povoa, P.; Rodríguez, A.; Curcio, D.; Suarez, D.; Mira, J.P.; Cordero, M.L.; Lepecq, R.; Girault, C.; Candeias, C.; et al. Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): A multicentre, prospective, observational study. Lancet Respir. Med. 2015, 3, 859–868. [Google Scholar] [CrossRef]
- Howroyd, F.; Chacko, C.; MacDuff, A.; Gautam, N.; Pouchet, B.; Tunnicliffe, B.; Weblin, J.; Gao-Smith, F.; Ahmed, Z.; Duggal, N.A.; et al. Ventilator associated pneumonia: Pathobiological heterogeneity and diagnostic challenges. Nat. Commun. 2024, 15, 6447. [Google Scholar] [CrossRef]
- Teixeira, P.J.Z.; Seligman, R.; Hertz, F.T.; Cruz, D.B.; Fachel, J.M.G. Inadequate treatment of ventilator-associated pneumonia: Risk factors and impact on outcomes. J. Hosp. Infect. 2007, 65, 361–367. [Google Scholar] [CrossRef]
- Delić, N.; Matetić, A.; Domjanović, J.; Kljaković Gašpić, T.; Šarić, L.; Ilić, D.; Došenović, S.; Domazet, J.; Kovač, R.; Runjić, F.; et al. Effects of different inhalation therapy on ventilator-associated pneumonia in ventilated COVID-19 patients: A randomized controlled trial. Microorganisms 2022, 10, 1118. [Google Scholar] [CrossRef]
- Martin Loeches, I.; Reyes, L.F.; Nseir, S.; Ranzani, O.; Povoa, P.; Diaz, E.; Schultz, M.J.; Rodríguez, A.H.; Serrano-Mayorga, C.C.; De Pascale, G.; et al. European Network for ICU Related Respiratory Infections (ENIRRIs): A multinational, prospective, cohort study of nosocomial LRTI. Intensive Care Med. 2023, 49, 1212–1222. [Google Scholar] [CrossRef]
- Ramírez Estrada, S.; Lagunes, L.; Peña López, Y.; Vahedian Azimi, A.; Nseir, S.; Arvaniti, K.; Bastug, A.; Totorika, I.; Oztoprak, N.; Bouadma, L.; et al. Assessing predictive accuracy for outcomes of ventilator-associated events in an international cohort: The EUVAE study. Intensive Care Med. 2018, 44, 1212–1220. [Google Scholar] [CrossRef]
- Foucrier, A.; Dessalle, T.; Tuffet, S.; Federici, L.; Dahyot Fizelier, C.; Barbier, F.; Pottecher, J.; Monsel, A.; Hissem, T.; Demoule, A.; et al. Association between combination antibiotic therapy as opposed to monotherapy and outcomes of ICU patients with Pseudomonas aeruginosa ventilator-associated pneumonia: An ancillary study of the iDIAPASON trial. Crit. Care 2023, 27, 211. [Google Scholar] [CrossRef]
- EUCAST. EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 30 July 2025).
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial susceptibility testing of colistin—Evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype–phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.; Chen, J.C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W112–W120. [Google Scholar] [CrossRef]
- Sullivan, N.; Mitchell, P.; Beatson, S. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef]
- Zupetic, J.; Peñaloza, H.F.; Bain, W.; Hulver, M.; Mettus, R.; Jorth, P.; Doi, Y.; Bomberger, J.; Pilewski, J.; Nouraie, M.; et al. Elastase activity from Pseudomonas aeruginosa respiratory isolates and ICU mortality. Chest 2021, 160, 1624–1633. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, F.; Huang, Y.; Xu, Q.; Yang, Y.; Gong, W.; Shi, C.; Zhang, Y. Clinical efficacy of ceftazidime/avibactam combination therapy for severe hospital-acquired pulmonary infections caused by carbapenem-resistant and difficult-to-treat Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2023, 63, 107021. [Google Scholar] [CrossRef]
- Elmouaden, C.; Laglaoui, A.; Ennanei, L.; Bakkali, M.; Abid, M. Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 2019, 13, 892–898. [Google Scholar] [CrossRef]
- Ali, A.S.B.; Ozler, B.; Baddal, B. Characterization of virulence genes associated with type III secretion system and biofilm formation in Pseudomonas aeruginosa clinical isolates. Curr. Microbiol. 2023, 80, 389. [Google Scholar] [CrossRef]
- Navarro, E.; Ugalde-Tecillo, L.; García-Cortés, L.R.; Moreno-Noguez, M.; Martínez-Gregorio, H.; Vaca-Paniagua, F.; Paniagua-Contreras, G.L. Molecular properties of virulence and antibiotic resistance of Pseudomonas aeruginosa causing clinically critical infections. Pathogens 2024, 13, 868. [Google Scholar] [CrossRef] [PubMed]
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Rojo-Molinero, E.; Arca-Suarez, J.; Beşli, Y.; Bogaerts, P.; Cantón, R.; Cimen, C.; Croughs, P.D.; Denis, O.; Giske, C.G.; et al. Pseudomonas aeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin. Microbiol. Infect. 2024, 30, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance integrons: Class 1, 2 and 3 integrons. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 10. [Google Scholar] [CrossRef]
- Poirel, L.; Lambert, T.; Türkoglü, S.; Ronco, E.; Gaillard, J.L.; Nordmann, P. Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the blaVIM-2 carbapenem-hydrolyzing β-lactamase gene and of two novel aminoglycoside resistance genes. Antimicrob. Agents Chemother. 2001, 45, 546–552. [Google Scholar] [CrossRef]
- Opazo-Capurro, A.; Morales-León, F.; Jerez, C.; Olivares-Pacheco, J.; Alcalde-Rico, M.; González-Muñoz, P.; Bello-Toledo, H.; Cardenas-Arias, A.; Esposito, F.; Lincopán, N.; et al. Isolation of an extensively drug-resistant Pseudomonas aeruginosa exoS+/O4 strain belonging to the “high-risk” clone ST654 and coproducer of NDM-1 and the novel VIM-80. Microbiol. Spectr. 2022, 10, e01439-22. [Google Scholar] [CrossRef]
- Gillings, M.R. Integrons: Past, present, and future. Microbiol. Mol. Biol. Rev. 2014, 78, 257–277. [Google Scholar] [CrossRef]
- Stoikov, I.; Ivanov, I.N.; Donchev, D.; Teneva, D.; Dobreva, E.; Hristova, R.; Sabtcheva, S. Genomic characterization of IMP-producing Pseudomonas aeruginosa in Bulgaria reveals the emergence of IMP-100, a novel plasmid-mediated variant coexisting with a chromosomal VIM-4. Preprints 2023. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Yao, H.; Zhao, X.; Chi, L.; Jin, C.Y.; Qin, S. The evolution of carbapenem resistant Pseudomonas aeruginosa in the COVID-19 era: A global perspective and regional insights. Int. J. Antimicrob. Agents. 2025, 65, 107466. [Google Scholar] [CrossRef]
- Libisch, B.; Balogh, B.; Füzi, M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr. Microbiol. 2009, 58, 111–116. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cavka, M.; Kvesic Ivankovic, M.; Maravic, A.; Dzelalija, M.; Marinovic, J.; Goic-Barisic, I.; Tonkic, M.; Novak, A. Phenotypic and Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance and Virulence in Pseudomonas aeruginosa Isolated from Patients with Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in a Croatian Intensive Care Unit. Genes 2026, 17, 130. https://doi.org/10.3390/genes17020130
Cavka M, Kvesic Ivankovic M, Maravic A, Dzelalija M, Marinovic J, Goic-Barisic I, Tonkic M, Novak A. Phenotypic and Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance and Virulence in Pseudomonas aeruginosa Isolated from Patients with Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in a Croatian Intensive Care Unit. Genes. 2026; 17(2):130. https://doi.org/10.3390/genes17020130
Chicago/Turabian StyleCavka, Marija, Marija Kvesic Ivankovic, Ana Maravic, Mia Dzelalija, Jelena Marinovic, Ivana Goic-Barisic, Marija Tonkic, and Anita Novak. 2026. "Phenotypic and Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance and Virulence in Pseudomonas aeruginosa Isolated from Patients with Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in a Croatian Intensive Care Unit" Genes 17, no. 2: 130. https://doi.org/10.3390/genes17020130
APA StyleCavka, M., Kvesic Ivankovic, M., Maravic, A., Dzelalija, M., Marinovic, J., Goic-Barisic, I., Tonkic, M., & Novak, A. (2026). Phenotypic and Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance and Virulence in Pseudomonas aeruginosa Isolated from Patients with Ventilator-Associated Pneumonia and Ventilator-Associated Tracheobronchitis in a Croatian Intensive Care Unit. Genes, 17(2), 130. https://doi.org/10.3390/genes17020130

