Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arrb2 Expression Data in BXD Family
2.2. Microarray Analysis and Data Processing
2.3. Correlation Analysis
2.4. Expression Quantitative Trait Loci (eQTL) Mapping
2.5. Gene Enrichment Analysis
2.6. Protein–Protein Interaction (PPI) Network
2.7. Differential Expression Between Human Autism and Control Samples
2.8. Candidate Gene Selection
2.9. Phenome-Wide Association Study (PheWAS)
2.10. Animals
2.11. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.12. Western Blotting
2.13. Statistical Analysis
3. Results
3.1. Expression Variability of Arrb2 in the BXD Family and Its Association with Autism Phenotypes
3.2. eQTL Mapping Reveals That Arrb2 Expression in the Mouse Brain Is Cis-Regulated
3.3. Arrb2-Correlated Genes Are Enriched in Neural Pathways and Phenotypes
3.4. PPI Network Analysis Infers Key Downstream Targets of Arrb2
3.5. Differentially Expressed Genes Between Human Autism and Control Samples
3.6. Identification of Strong Candidate Genes Regulated by Arrb2
3.7. PheWAS Analysis of Genetic Variations in Candidate Genes
3.8. Knocking Out Arrb2 Downregulates the Expression of Downstream Candidate Genes in the Hippocampus of Mice
3.9. Abnormal PKA-Induced Synapsin I Activation in the Hippocampus of Arrb2−/− Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asher, W.B.; Terry, D.S.; Gregorio, G.G.A.; Kahsai, A.W.; Borgia, A.; Xie, B.; Modak, A.; Zhu, Y.; Jang, W.; Govindaraju, A.; et al. GPCR-Mediated β-Arrestin Activation Deconvoluted with Single-Molecule Precision. Cell 2022, 185, 1661–1675.e16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-J.; Wang, D.-D.; Tao, J.; Tai, Y.; Zhou, Z.-W.; Wang, Z.; Guo, P.-P.; Sun, W.-Y.; Chen, J.-Y.; Wu, H.-X.; et al. Deficiency of β-Arrestin2 Exacerbates Inflammatory Arthritis by Facilitating Plasma Cell Formation. Acta Pharmacol. Sin. 2021, 42, 755–766. [Google Scholar] [CrossRef]
- Ma, T.-L.; Zhou, Y.; Zhang, C.-Y.; Gao, Z.-A.; Duan, J.-X. The Role and Mechanism of β-Arrestin2 in Signal Transduction. Life Sci. 2021, 275, 119364. [Google Scholar] [CrossRef] [PubMed]
- Kee, T.R.; Khan, S.A.; Neidhart, M.B.; Masters, B.M.; Zhao, V.K.; Kim, Y.K.; McGill Percy, K.C.; Woo, J.-A.A. The Multifaceted Functions of β-Arrestins and Their Therapeutic Potential in Neurodegenerative Diseases. Exp. Mol. Med. 2024, 56, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Y.; Tong, L.; Feng, S.; Du, D.; Chen, F. Identification of a β-Arrestin 2 Mutation Related to Autism by Whole-Exome Sequencing. Biomed Res. Int. 2020, 2020, 8872577. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Peng, Q.; Li, F.; Chen, F. β-Arrestin2 Mediates the Hippocampal Dopaminergic System in Autistic Mouse through the ERK Signaling Pathway β-Arrestin2. Behav. Brain Res. 2022, 428, 113888. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, Y.; Yu, L.; Shen, Y.; Li, F.; Feng, S.; Chen, F. Deletion of Arrb2 Down-Regulates Autophagy in the Mouse Hippocampus via Akt-mTOR Pathway Activation. Neuroscience 2023, 519, 120–130. [Google Scholar] [CrossRef]
- Blenner, S.; Reddy, A.; Augustyn, M. Diagnosis and Management of Autism in Childhood. BMJ 2011, 343, d6238. [Google Scholar] [CrossRef]
- Silverman, J.L.; Yang, M.; Lord, C.; Crawley, J.N. Behavioural Phenotyping Assays for Mouse Models of Autism. Nat. Rev. Neurosci. 2010, 11, 490–502. [Google Scholar] [CrossRef]
- Scherer, S.W.; Dawson, G. Risk Factors for Autism: Translating Genomic Discoveries into Diagnostics. Hum. Genet. 2011, 130, 123–148. [Google Scholar] [CrossRef]
- McPartland, J.C. Developing Clinically Practicable Biomarkers for Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 2935–2937. [Google Scholar] [CrossRef] [PubMed]
- Moerkerke, M.; Daniels, N.; Van der Donck, S.; Tang, T.; Prinsen, J.; Yargholi, E.; Steyaert, J.; Alaerts, K.; Boets, B. Impact of Chronic Intranasal Oxytocin Administration on Face Expression Processing in Autistic Children: A Randomized Controlled Trial Using fMRI. Mol. Autism 2024, 15, 53. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, A.; Wang, J.; Bai, H.; Liu, T.; Sun, C.; Li, Z.; Tang, Y.; Xu, F.; Liu, S. Abnormalities in Cerebellar Subregions’ Volume and Cerebellocerebral Structural Covariance in Autism Spectrum Disorder. Autism Res. 2025, 18, 83–97. [Google Scholar] [CrossRef]
- Sahin, M.; Sur, M. Genes, Circuits, and Precision Therapies for Autism and Related Neurodevelopmental Disorders. Science 2015, 350, aab3897. [Google Scholar] [CrossRef]
- Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W.; et al. The Neuropathology of Autism: Defects of Neurogenesis and Neuronal Migration, and Dysplastic Changes. Acta Neuropathol. 2010, 119, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, J.; Gong, H.; Liu, T.; Li, X.; Fan, X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr. Neuropharmacol. 2023, 21, 2266–2282. [Google Scholar] [CrossRef] [PubMed]
- Dang, R.; Liu, A.; Zhou, Y.; Li, X.; Wu, M.; Cao, K.; Meng, Y.; Zhang, H.; Gan, G.; Xie, W.; et al. Astrocytic Neuroligin 3 Regulates Social Memory and Synaptic Plasticity through Adenosine Signaling in Male Mice. Nat. Commun. 2024, 15, 8639. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Chen, X.; Wettschurack, K.; Que, Z.; Deming, B.A.; Olivero-Acosta, M.I.; Cui, N.; Eaton, M.; Zhao, Y.; et al. Microglial Over-Pruning of Synapses during Development in Autism-Associated SCN2A-Deficient Mice and Human Cerebral Organoids. Mol. Psychiatry 2024, 29, 2424–2437. [Google Scholar] [CrossRef]
- Vakilzadeh, G.; Maseko, B.C.; Bartely, T.D.; McLennan, Y.A.; Martínez-Cerdeño, V. Increased Number of Excitatory Synapsis and Decreased Number of Inhibitory Synapsis in the Prefrontal Cortex in Autism. Cereb. Cortex 2024, 34, 121–128. [Google Scholar] [CrossRef]
- Civelek, M.; Lusis, A.J. Systems Genetics Approaches to Understand Complex Traits. Nat. Rev. Genet. 2014, 15, 34–48. [Google Scholar] [CrossRef]
- Taylor, B.A.; Heiniger, H.J.; Meier, H. Genetic Analysis of Resistance to Cadmium-Induced Testicular Damage in Mice. Proc. Soc. Exp. Biol. Med. 1973, 143, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; López-Granero, C.; Ferrer, B.; Tinkov, A.A.; Skalny, A.V.; Paoliello, M.M.B.; Aschner, M. BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules 2021, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Philip, V.M.; Duvvuru, S.; Gomero, B.; Ansah, T.A.; Blaha, C.D.; Cook, M.N.; Hamre, K.M.; Lariviere, W.R.; Matthews, D.B.; Mittleman, G.; et al. High-Throughput Behavioral Phenotyping in the Expanded Panel of BXD Recombinant Inbred Strains. Genes Brain Behav. 2010, 9, 129–159. [Google Scholar] [CrossRef]
- Wang, C.; Hei, Y.; Liu, Y.; Bajpai, A.K.; Li, Y.; Guan, Y.; Xu, F.; Yao, C. Systems Genetics Identifies Methionine as a High Risk Factor for Alzheimer’s Disease. Front. Neurosci. 2024, 18, 1381889. [Google Scholar] [CrossRef]
- Jia, Y.; Gao, M.-D.; Liu, Y.-F.; Lu, L.; Chen, G.; Chen, Y. Genetic Dissection of Glutathione S-Transferase Omega-1: Identification of Novel Downstream Targets and Alzheimer’s Disease Pathways. Neural Regener. Res. 2022, 17, 2452. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Liu, X.; Chi, X.; Gu, Z.; Cui, B.; Bergquist, J.; Wang, B.; Tian, G.; Yang, C.; et al. The Combination of Quantitative Proteomics and Systems Genetics Analysis Reveals That PTN Is Associated with Sleep-Loss-Induced Cognitive Impairment. J. Proteome Res. 2023, 22, 2936–2949. [Google Scholar] [CrossRef]
- Xu, F.; Gao, J.; Munkhsaikhan, U.; Li, N.; Gu, Q.; Pierre, J.F.; Starlard-Davenport, A.; Towbin, J.A.; Cui, Y.; Purevjav, E.; et al. The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Front. Cardiovasc. Med. 2020, 7, 582949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, T.; He, H.; Xu, F.; Yang, C.; Lu, L.; Tian, G.; Wang, L.; Mi, J. Unraveling the Molecular Mechanisms of Ace2-Mediated Post-COVID-19 Cognitive Dysfunction through Systems Genetics Approach. Exp. Neurol. 2024, 381, 114921. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Gu, Q.; Orgil, B.-O.; Alberson, N.R.; Towbin, J.A.; Martinez, H.R.; Lu, L.; Purevjav, E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes 2023, 15, 53. [Google Scholar] [CrossRef]
- Geisert, E.E.; Williams, R.W. Using BXD Mouse Strains in Vision Research: A Systems Genetics Approach. Mol. Vision 2020, 26, 173–187. [Google Scholar]
- Hollingsworth, T.J.; Wang, X.; White, W.A.; Simpson, R.N.; Jablonski, M.M. Chronic Proinflammatory Signaling Accelerates the Rate of Degeneration in a Spontaneous Polygenic Model of Inherited Retinal Dystrophy. Front. Pharmacol. 2022, 13, 839424. [Google Scholar] [CrossRef]
- Pan, L.; Cho, K.-S.; Wei, X.; Xu, F.; Lennikov, A.; Hu, G.; Tang, J.; Guo, S.; Chen, J.; Kriukov, E.; et al. IGFBPL1 Is a Master Driver of Microglia Homeostasis and Resolution of Neuroinflammation in Glaucoma and Brain Tauopathy. Cell Rep. 2023, 42, 112889. [Google Scholar] [CrossRef]
- Tabbaa, M.; Knoll, A.; Levitt, P. Mouse Population Genetics Phenocopies Heterogeneity of Human Chd8 Haploinsufficiency. Neuron 2023, 111, 539–556.e5. [Google Scholar] [CrossRef]
- Ashbrook, D.G.; Roy, S.; Clifford, B.G.; Riede, T.; Scattoni, M.L.; Heck, D.H.; Lu, L.; Williams, R.W. Born to Cry: A Genetic Dissection of Infant Vocalization. Front. Behav. Neurosci. 2018, 12, 250. [Google Scholar] [CrossRef] [PubMed]
- Poot, M.; Badea, A.; Williams, R.W.; Kas, M.J. Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes. PLoS ONE 2011, 6, e18612. [Google Scholar] [CrossRef] [PubMed]
- Newbury, A.J.; Rosen, G.D. Genetic, Morphometric, and Behavioral Factors Linked to the Midsagittal Area of the Corpus Callosum. Front. Genet. 2012, 3, 91. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, M.K.; Mozhui, K.; Prins, P.; Williams, R.W. GeneNetwork: A Toolbox for Systems Genetics. In Systems Genetics: Methods and Protocols; Schughart, K., Williams, R.W., Eds.; Springer: New York, NY, USA, 2017; pp. 75–120. ISBN 978-1-4939-6427-7. [Google Scholar]
- Peirce, J.L.; Lu, L.; Gu, J.; Silver, L.M.; Williams, R.W. A New Set of BXD Recombinant Inbred Lines from Advanced Intercross Populations in Mice. BMC Genet. 2004, 5, 7. [Google Scholar] [CrossRef]
- Chesler, E.J.; Lu, L.; Shou, S.; Qu, Y.; Gu, J.; Wang, J.; Hsu, H.C.; Mountz, J.D.; Baldwin, N.E.; Langston, M.A.; et al. Complex Trait Analysis of Gene Expression Uncovers Polygenic and Pleiotropic Networks That Modulate Nervous System Function. Nat. Genet. 2005, 37, 233–242. [Google Scholar] [CrossRef]
- Kerns, R.T.; Ravindranathan, A.; Hassan, S.; Cage, M.P.; York, T.; Sikela, J.M.; Williams, R.W.; Miles, M.F. Ethanol-Responsive Brain Region Expression Networks: Implications for Behavioral Responses to Acute Ethanol in DBA/2J versus C57BL/6J Mice. J. Neurosci. 2005, 25, 2255–2266. [Google Scholar] [CrossRef]
- Bolstad, B.M.; Irizarry, R.A.; Åstrand, M.; Speed, T.P. A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias. Method. Biochem. Anal. 2003, 19, 185–193. [Google Scholar] [CrossRef]
- Kazdoba, T.M.; Leach, P.T.; Crawley, J.N. Behavioral Phenotypes of Genetic Mouse Models of Autism. Genes Brain Behav. 2016, 15, 7–26. [Google Scholar] [CrossRef]
- Shifman, S.; Bell, J.T.; Copley, R.R.; Taylor, M.S.; Williams, R.W.; Mott, R.; Flint, J. A High-Resolution Single Nucleotide Polymorphism Genetic Map of the Mouse Genome. PLoS Biol. 2006, 4, e395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Stephens, M. Genome-Wide Efficient Mixed-Model Analysis for Association Studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef]
- Ginsberg, M.R.; Rubin, R.A.; Falcone, T.; Ting, A.H.; Natowicz, M.R. Brain Transcriptional and Epigenetic Associations with Autism. PLoS ONE 2012, 7, e44736. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, M.R.; Rubin, R.A.; Natowicz, M.R. Patterning of Regional Gene Expression in Autism: New Complexity. Sci. Rep. 2013, 3, 1831. [Google Scholar] [CrossRef]
- Parras, A.; Anta, H.; Santos-Galindo, M.; Swarup, V.; Elorza, A.; Nieto-González, J.L.; Picó, S.; Hernández, I.H.; Díaz-Hernández, J.I.; Belloc, E.; et al. Autism-like Phenotype and Risk Gene mRNA Deadenylation by CPEB4 Mis-Splicing. Nature 2018, 560, 441–446. [Google Scholar] [CrossRef]
- Kuwano, Y.; Kamio, Y.; Kawai, T.; Katsuura, S.; Inada, N.; Takaki, A.; Rokutan, K. Autism-Associated Gene Expression in Peripheral Leucocytes Commonly Observed between Subjects with Autism and Healthy Women Having Autistic Children. PLoS ONE 2011, 6, e24723. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 2003, 4, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Blake, J.A.; Kadin, J.A.; Richardson, J.E.; Bult, C.J. Mouse Genome Database Group Mouse Genome Database (MGD)-2018: Knowledgebase for the Laboratory Mouse. Nucleic Acids Res. 2018, 46, D836–D842. [Google Scholar] [CrossRef]
- Shimoyama, M.; De Pons, J.; Hayman, G.T.; Laulederkind, S.J.F.; Liu, W.; Nigam, R.; Petri, V.; Smith, J.R.; Tutaj, M.; Wang, S.-J.; et al. The Rat Genome Database 2015: Genomic, Phenotypic and Environmental Variations and Disease. Nucleic Acids Res. 2015, 43, D743–D750. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Basu, S.N.; Kollu, R.; Banerjee-Basu, S. AutDB: A Gene Reference Resource for Autism Research. Nucleic Acids Res. 2009, 37, D832–D836. [Google Scholar] [CrossRef]
- Wu, Y.; Williams, E.G.; Dubuis, S.; Mottis, A.; Jovaisaite, V.; Houten, S.M.; Argmann, C.A.; Faridi, P.; Wolski, W.; Kutalik, Z.; et al. Multilayered Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference Population. Cell 2014, 158, 1415–1430. [Google Scholar] [CrossRef]
- Graybeal, C.; Bachu, M.; Mozhui, K.; Saksida, L.M.; Bussey, T.J.; Sagalyn, E.; Williams, R.W.; Holmes, A. Strains and Stressors: An Analysis of Touchscreen Learning in Genetically Diverse Mouse Strains. PLoS ONE 2014, 9, e87745. [Google Scholar] [CrossRef]
- McCaughran, J.; Bell, J.; Hitzemann, R. On the Relationships of High-Frequency Hearing Loss and Cochlear Pathology to the Acoustic Startle Response (ASR) and Prepulse Inhibition of the ASR in the BXD Recombinant Inbred Series. Behav. Genet. 1999, 29, 21–30. [Google Scholar] [CrossRef]
- Thompson, S.L.; Dulawa, S.C. Dissecting the Roles of β-Arrestin2 and GSK-3 Signaling in 5-HT1BR-Mediated Perseverative Behavior and Prepulse Inhibition Deficits in Mice. PLoS ONE 2019, 14, e0211239. [Google Scholar] [CrossRef]
- Miller, E.A.; Kastner, D.B.; Grzybowski, M.N.; Dwinell, M.R.; Geurts, A.M.; Frank, L.M. Robust and Replicable Measurement for Prepulse Inhibition of the Acoustic Startle Response. Mol. Psychiatry 2021, 26, 1909–1927. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Kohler, J.; Winter, Y.; Spies, C.; Endres, M.; Banneke, S.; Emmrich, J.V. Automated Radial 8-Arm Maze: A Voluntary and Stress-Free Behavior Test to Assess Spatial Learning and Memory in Mice. Behav. Brain Res. 2020, 381, 112352. [Google Scholar] [CrossRef]
- Tian, Y.; Jing, G.; Zhang, M. Insulin-Degrading Enzyme: Roles and Pathways in Ameliorating Cognitive Impairment Associated with Alzheimer’s Disease and Diabetes. Ageing Res. Rev. 2023, 90, 101999. [Google Scholar] [CrossRef]
- Song, P.; Peng, W.; Sauve, V.; Fakih, R.; Xie, Z.; Ysselstein, D.; Krainc, T.; Wong, Y.C.; Mencacci, N.E.; Savas, J.N.; et al. Parkinson’s Disease-Linked Parkin Mutation Disrupts Recycling of Synaptic Vesicles in Human Dopaminergic Neurons. Neuron 2023, 111, 3775–3788.e7. [Google Scholar] [CrossRef]
- Zoghbi, H.Y.; Bear, M.F. Synaptic Dysfunction in Neurodevelopmental Disorders Associated with Autism and Intellectual Disabilities. Cold Spring Harbor Perspect. Biol. 2012, 4, a009886. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, N.; Cheng, A.A.; Brown, C.O.; Meka, D.P.; Hong, S.; Uy, J.A.; El-Hajjar, J.; Pipko, N.; Unda, B.K.; Schwanke, B.; et al. Neuron-Specific Protein Network Mapping of Autism Risk Genes Identifies Shared Biological Mechanisms and Disease-Relevant Pathologies. Cell Rep. 2022, 41, 111678. [Google Scholar] [CrossRef] [PubMed]
- Ceccaldi, P.E.; Grohovaz, F.; Benfenati, F.; Chieregatti, E.; Greengard, P.; Valtorta, F. Dephosphorylated Synapsin I Anchors Synaptic Vesicles to Actin Cytoskeleton: An Analysis by Videomicroscopy. J. Cell Biol. 1995, 128, 905–912. [Google Scholar] [CrossRef]
- Bak, M. Neurite Outgrowth: From cAMP and PKA to Phosphorylation of Synapsins. Trends Neurosci. 2002, 25, 345. [Google Scholar] [CrossRef]
- Arda, D.B.; Tunç, K.C.; Bozkurt, M.F.; Bora, E.S.; Çiğel, A.; Erbaş, O. Intranasal Insulin Eases Autism in Rats via GDF-15 and Anti-Inflammatory Pathways. Curr. Issues Mol. Biol. 2024, 46, 10530–10544. [Google Scholar] [CrossRef]
- Pizzarelli, R.; Pimpinella, D.; Jacobs, C.; Tartacca, A.; Kullolli, U.; Monyer, H.; Alberini, C.M.; Griguoli, M. Insulin-like Growth Factor 2 (IGF-2) Rescues Social Deficits in NLG3–/y Mouse Model of ASDs. Front. Cell. Neurosci. 2024, 17, 1332179. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Y.; Jiang, J.; Pan, Y.; Yang, Y.; Fang, X.; Liang, L.; Li, H.; Dong, Z.; Fan, S.; et al. Gut Microbial GABA Imbalance Emerges as a Metabolic Signature in Mild Autism Spectrum Disorder Linked to Overrepresented Escherichia. Cell Rep. Med. 2025, 6, 101919. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Song, Y.; Wang, J.; Cai, Y.; Peng, S.; Lin, J.; Lai, B.; Sun, J.; Liu, T.; Chen, G.; et al. Developmental Dopaminergic Signaling Modulates Neural Circuit Formation and Contributes to Autism Spectrum Disorder-Related Phenotypes. Am. J. Pathol. 2024, 194, 1062–1077. [Google Scholar] [CrossRef]
- Bacova, Z.; Havranek, T.; Mihalj, D.; Borbelyova, V.; Kostrubanicova, K.; Kramarova, M.; Ostatnikova, D.; Bakos, J. Reduced Neurite Arborization in Primary Dopaminergic Neurons in Autism-like Shank3B-Deficient Mice. Mol. Neurobiol. 2024, 62, 5838–5849. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xiao, X.; Liu, W.; Cheng, S.; Qian, N.; Wang, L.; Liu, Y.; Ai, R.; Zhu, X. TREM2 Improves Microglia Function and Synaptic Development in Autism Spectrum Disorders by Regulating P38 MAPK Signaling Pathway. Mol. Brain 2024, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.M.; Saradalekshmi, K.R.; Shilen, N.; Suresh, P.A.; Banerjee, M. Genetic Association of DNMT Variants Can Play a Critical Role in Defining the Methylation Patterns in Autism. IUBMB Life 2019, 71, 901–907. [Google Scholar] [CrossRef]
- Noguchi, H.; Murao, N.; Kimura, A.; Matsuda, T.; Namihira, M.; Nakashima, K. DNA Methyltransferase 1 Is Indispensable for Development of the Hippocampal Dentate Gyrus. J. Neurosci. 2016, 36, 6050–6068. [Google Scholar] [CrossRef]
- Biniszkiewicz, D.; Gribnau, J.; Ramsahoye, B.; Gaudet, F.; Eggan, K.; Humpherys, D.; Mastrangelo, M.-A.; Jun, Z.; Walter, J.; Jaenisch, R. Dnmt1 Overexpression Causes Genomic Hypermethylation, Loss of Imprinting, and Embryonic Lethality. Mol. Cell. Biol. 2002, 22, 2124–2135. [Google Scholar] [CrossRef]
- Hotulainen, P.; Hoogenraad, C.C. Actin in Dendritic Spines: Connecting Dynamics to Function. J. Cell Biol. 2010, 189, 619–629. [Google Scholar] [CrossRef]
- Joensuu, M.; Lanoue, V.; Hotulainen, P. Dendritic Spine Actin Cytoskeleton in Autism Spectrum Disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 362–381. [Google Scholar] [CrossRef]
- Hlushchenko, I.; Khanal, P.; Abouelezz, A.; Paavilainen, V.O.; Hotulainen, P. ASD-Associated de Novo Mutations in Five Actin Regulators Show Both Shared and Distinct Defects in Dendritic Spines and Inhibitory Synapses in Cultured Hippocampal Neurons. Front. Cell. Neurosci. 2018, 12, 217. [Google Scholar] [CrossRef]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.-H.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Korb, E.; Herre, M.; Zucker-Scharff, I.; Gresack, J.; Allis, C.D.; Darnell, R.B. Excess Translation of Epigenetic Regulators Contributes to Fragile X Syndrome and Is Alleviated by Brd4 Inhibition. Cell 2017, 170, 1209–1223.e20. [Google Scholar] [CrossRef] [PubMed]
- Krumm, N.; Turner, T.N.; Baker, C.; Vives, L.; Mohajeri, K.; Witherspoon, K.; Raja, A.; Coe, B.P.; Stessman, H.A.; He, Z.-X.; et al. Excess of Rare, Inherited Truncating Mutations in Autism. Nat. Genet. 2015, 47, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Jouret, G.; Heide, S.; Sorlin, A.; Faivre, L.; Chantot-Bastaraud, S.; Beneteau, C.; Denis-Musquer, M.; Turnpenny, P.D.; Coutton, C.; Vieville, G.; et al. Understanding the New BRD4-Related Syndrome: Clinical and Genomic Delineation with an International Cohort Study. Clin. Genet. 2022, 102, 117–122. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Deng, Y.; Du, Z.; Guo, B.; Yue, J.; Liu, X.; Zhang, Y. The Notch1/Hes1 Signaling Pathway Affects Autophagy by Adjusting DNA Methyltransferases Expression in a Valproic Acid-Induced Autism Spectrum Disorder Model. Neuropharmacology 2023, 239, 109682. [Google Scholar] [CrossRef]
- Zhao, J.; DiGiacomo, V.; Ferreras-Gutierrez, M.; Dastjerdi, S.; Ibáñez de Opakua, A.; Park, J.-C.; Luebbers, A.; Chen, Q.; Beeler, A.; Blanco, F.J.; et al. Small-Molecule Targeting of GPCR-Independent Noncanonical G-Protein Signaling in Cancer. Proc. Natl. Acad. Sci. USA 2023, 120, e2213140120. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, Q.J.; Li, X.; Yan, Y.; Backer, J.M.; Chait, B.T.; Heintz, N.; Yue, Z. Distinct Regulation of Autophagic Activity by Atg14L and Rubicon Associated with Beclin 1–Phosphatidylinositol-3-Kinase Complex. Nat. Cell Biol. 2009, 11, 468–476. [Google Scholar] [CrossRef]
- Tomko, R.J., Jr.; Hochstrasser, M. Molecular Architecture and Assembly of the Eukaryotic Proteasome. Annu. Rev. Biochem. 2013, 82, 415–445. [Google Scholar] [CrossRef]
- Lyu, Y.; Huang, Y.; Shi, G.; Lei, X.; Li, K.; Zhou, R.; Bai, L.; Qin, C. Transcriptome Profiling of Five Brain Regions in a 6-Hydroxydopamine Rat Model of Parkinson’s Disease. CNS Neurosci. Ther. 2021, 27, 1289–1299. [Google Scholar] [CrossRef]
- Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; et al. Mutations in the Gene Encoding the Synaptic Scaffolding Protein SHANK3 Are Associated with Autism Spectrum Disorders. Nat. Genet. 2007, 39, 25–27. [Google Scholar] [CrossRef]
- Bernier, R.; Golzio, C.; Xiong, B.; Stessman, H.A.; Coe, B.P.; Penn, O.; Witherspoon, K.; Gerdts, J.; Baker, C.; Vulto-van Silfhout, A.T.; et al. Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell 2014, 158, 263–276. [Google Scholar] [CrossRef] [PubMed]
- LaSalle, J.M.; Yasui, D.H. Evolving Role of MeCP2 in Rett Syndrome and Autism. Epigenomics 2009, 1, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Alshamrani, A.A.; Alshehri, S.; Alqarni, S.S.; Ahmad, S.F.; Alghibiwi, H.; Al-Harbi, N.O.; Alqarni, S.A.; Al-Ayadhi, L.Y.; Attia, S.M.; Alfardan, A.S.; et al. DNA Hypomethylation Is Associated with Increased Inflammation in Peripheral Blood Neutrophils of Children with Autism Spectrum Disorder: Understanding the Role of Ubiquitous Pollutant Di(2-Ethylhexyl) Phthalate. Metabolites 2023, 13, 458. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.C.; Leha, A.; Bidner, H.; Cordts, I.; Dorst, J.; Günther, R.; Zeller, D.; Braun, N.; Metelmann, M.; Corcia, P.; et al. Safety, Tolerability, and Efficacy of Fasudil in Amyotrophic Lateral Sclerosis (ROCK-ALS): A Phase 2, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Neurol. 2024, 23, 1133–1146. [Google Scholar] [CrossRef]
- Chevaleyre, C.; Zimmermann, L.; Specklin, S.; Kereselidze, D.; Bouleau, A.; Dubois, S.; Quelquejay, H.; Maillère, B.; Tournier, N.; Nozach, H.; et al. PET Imaging of PD-L1 Occupancy for Preclinical Assessment of the Efficacy of Combined Anti–PD-L1 Immunotherapy and Targeted Therapy. J. Nucl. Med. 2025, 66, 559–564. [Google Scholar] [CrossRef]
- Xiang, Y.; Tanaka, Y.; Patterson, B.; Hwang, S.-M.; Hysolli, E.; Cakir, B.; Kim, K.-Y.; Wang, W.; Kang, Y.-J.; Clement, E.M.; et al. Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Mol. Cell 2020, 79, 84–98.e9. [Google Scholar] [CrossRef]
- Luteijn, M.J.; Bhaskar, V.; Trojer, D.; Schürz, M.; Mahboubi, H.; Handl, C.; Pizzato, N.; Pfeifer, M.; Dafinca, R.; Voshol, H.; et al. High-Throughput Screen of 100 000 Small Molecules in C9ORF72 ALS Neurons Identifies Spliceosome Modulators That Mobilize G4C2 Repeat RNA into Nuclear Export and Repeat Associated Non-Canonical Translation. Nucleic Acids Res. 2025, 53, gkaf253. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Z.; Xia, M.; Liu, J.; Shou, X.; Cui, Z.; Liao, X.; He, Y. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-Analysis Study Using the Autism Brain Imaging Data Exchange Dataset. Biol. Psychiatry 2022, 91, 945–955. [Google Scholar] [CrossRef]
Gene Name | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
Arrb2 | GAGGAACTCTGTGCGGCTTATCATC | GAGGAAGTGGCGTGTGGTTTCAG |
Dnmt3a | CGCAAAGCCATCTACGAAGTCC | GCTTGTTCTGCACTTCCACAGC |
Myh9 | CACTACCAACCTCATGGAAGAGG | TCCAACTCCTGCCTCTGCTTCT |
Ccdc88a | AAAGAGCGGCTCCTACACGATG | TCTAACCGAGCTTCTAAAGCAGC |
Dnmt1 | GGACAAGGAGAATGCCATGAAGC | TTACTCCGTCCAGTGCCACCAA |
Becn1 | CAGCCTCTGAAACTGGACACGA | CTCTCCTGAGTTAGCCTCTTCC |
Gng2 | GAAGCCAACATCGACAGGAT | GTTTTCTGAGGCTGGGACTG |
Psmb6 | GGCATGACCAAGGACGAATGTC | TTGGTCTCCCAAAAGCACCTGC |
Brd4 | GCCATCTACACTACGAGAGTTGG | ATTCGCTGGTGCTCTCCGACTC |
Gapdh | AAGAAGGTGGTGAAGCAGG | GAAGGTGGAAGAGTGGGAGT |
Gene Name | Parameters Considered for Scoring | ||||
---|---|---|---|---|---|
Degree PPI Network | Tissue_Correlation p < 0.05 in Any One of Four Brain Regions (Count) | Autism Related | Differential in Any of the Three Comparisons | Total Score | |
Dnmt3a | 4 | 3 | Y | Y | 5 |
Myh9 | 2 | 3 | Y | Y | 5 |
Ccdc88a | 4 | 3 | -- | Y | 4 |
Dnmt1 | 4 | 3 | Y | -- | 4 |
Becn1 | 3 | 3 | -- | Y | 4 |
Gng2 | 9 | 3 | -- | Y | 4 |
Psmb6 | 5 | 3 | -- | Y | 4 |
Brd4 | 3 | 3 | Y | Y | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Bajpai, A.K.; Liu, Y.; Yu, L.; Dong, Y.; Li, F.; Chen, F.; Lu, L.; Feng, S. Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders. Genes 2025, 16, 605. https://doi.org/10.3390/genes16050605
Xia J, Bajpai AK, Liu Y, Yu L, Dong Y, Li F, Chen F, Lu L, Feng S. Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders. Genes. 2025; 16(5):605. https://doi.org/10.3390/genes16050605
Chicago/Turabian StyleXia, Junyu, Akhilesh K. Bajpai, Yamei Liu, Lele Yu, Yating Dong, Feng Li, Fuxue Chen, Lu Lu, and Shini Feng. 2025. "Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders" Genes 16, no. 5: 605. https://doi.org/10.3390/genes16050605
APA StyleXia, J., Bajpai, A. K., Liu, Y., Yu, L., Dong, Y., Li, F., Chen, F., Lu, L., & Feng, S. (2025). Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders. Genes, 16(5), 605. https://doi.org/10.3390/genes16050605