Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- The rate does not exceed 2% in the control population sample (gnomad v.2.1.1) [23].
- (2)
- A corresponding gene is associated with a specific phenotype in OMIM compendium [24].
- (3)
- The variant is located in a coding or splicing region of the gene as per VEP annotation [25].
- (4)
- Filtration rules out the variants annotated as benign or likely benign in ClinVar archive [26].
- (5)
- The synonymous variants which had not been mentioned in any databases or other literary references before and the variants located in the non-coding regions of the genome were reviewed if the probability of their impact on splicing is high, as evidenced by in silico algorithm data.
- (6)
- The variants annotated as pathogenic and likely pathogenic in ClinVar archive were considered without filtration.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rydberg, C.; Tunón, K. Detection of fetal abnormalities by second-trimester ultrasound screening in a non-selected population. Acta Obstet. Gynecol. Scand. 2017, 96, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.; Leucht, W.; Boos, R.; Tariverdian, S.; Rabe, D.; Walter, C.; Heberling, D. Sonographische Diagnostik schwerer fetaler Fehlbildungen. Geburtshilfe Frauenheilkd. 1985, 45, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; Kilby, M.D. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.L.A.; Shaffer, L.G.; Chitty, L.S.; Rosenfeld, J.A.; Crolla, J.A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: A review of the literature. Prenat. Diagn. 2013, 33, 1119–1123. [Google Scholar] [CrossRef]
- Normand, E.A.; Alaimo, J.T.; van den Veyver, I.B. Exome and genome sequencing in reproductive medicine. Fertil. Steril. 2018, 109, 213–220. [Google Scholar] [CrossRef]
- Drury, S.; Williams, H.; Trump, N.; Boustred, C.; Gosgene; Lench, N.; Scott, R.H.; Chitty, L.S. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat. Diagn. 2015, 35, 1010–1017. [Google Scholar] [CrossRef]
- Fu, F.; Li, R.; Li, Y.; Nie, Z.Q.; Lei, T.Y.; Wang, D.; Yang, X.; Han, J.; Pan, M.; Zhen, L.; et al. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet. Gynecol. 2018, 51, 493–502. [Google Scholar] [CrossRef]
- Leung, G.K.C.; Mak, C.C.; Fung, J.L.; Wong, W.H.; Tsang, M.H.; Yu, M.H.; Pei, S.L.C.; Yeung, K.S.; Mok, G.T.K.; Lee, C.P.; et al. Identifying the genetic causes for prenatally diagnosed structural congenital anomalies (SCAs) by whole-exome sequencing (WES). BMC Med. Genom. 2018, 11, 93. [Google Scholar] [CrossRef]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef]
- Diderich, K.E.M.; Romijn, K.; Joosten, M.; Govaerts, L.C.P.; Polak, M.; Bruggenwirth, H.T.; Wilke, M.; van Slegtenhorst, M.A.; van Bever, Y.; Brooks, A.S.; et al. The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies. Acta Obstet. Gynecol. Scand. 2020, 100, 1106–1115. [Google Scholar] [CrossRef]
- Monaghan, K.G.; Leach, N.T.; Pekarek, D.; Prasad, P.; Rose, N.C. The use of fetal exome sequencing in prenatal diagnosis: A points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Janicki, E.; De Rademaeker, M.; Meunier, C.; Boeckx, N.; Blaumeiser, B.; Janssens, K. Implementation of Exome Sequencing in Prenatal Diagnostics: Chances and Challenges. Diagnostics 2023, 13, 860. [Google Scholar] [CrossRef] [PubMed]
- Yaron, Y.; Ofen Glassner, V.; Mory, A.; Zunz Henig, N.; Kurolap, A.; Bar Shira, A.; Brabbing Goldstein, D.; Marom, D.; Ben Sira, L.; Baris Feldman, H.; et al. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. Ultrasound Obstet. Gynecol. 2022, 60, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, L.Y.; Pan, M.; Xu, L.L.; Zhen, L.; Han, J.; Li, D.Z. Exome sequencing improves genetic diagnosis of fetal increased nuchal translucency. Prenat. Diagn. 2020, 40, 1426–1431. [Google Scholar] [CrossRef]
- Veyver, I.B.V.D.; Yaron, Y.; Deans, Z.C. International Society for Prenatal Diagnosis 2022 debate 3—Fetal genome sequencing should be offered to all pregnant patients. Prenat. Diagn. 2023, 43, 428–434. [Google Scholar] [CrossRef]
- FastQC [Electronic Resource]. Available online: https://github.com/s-andrews/FastQC (accessed on 28 June 2022).
- Sturm, M.; Schroeder, C.; Bauer, P. SeqPurge: Highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinform. 2016, 17, 208. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Faust, G.G.; Hall, I.M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 2014, 30, 2503–2505. [Google Scholar] [CrossRef]
- Mose, L.E.; Perou, C.M.; Parker, J.S. Improved indel detection in DNA and RNA via realignment with ABRA2. Bioinformatics 2019, 35, 2966–2973. [Google Scholar] [CrossRef]
- FreeBayes [Electronic Resource]. Available online: https://github.com/freebayes/freebayes (accessed on 28 June 2022).
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. McKusick’s Online Mendelian Inheritance in Man (OMIM(R)). Nucleic Acids Res. 2009, 37, D793–D796. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Ryzhkova, O.P.; Kardymon, O.L.; Prohorchuk, E.B.; Konovalov, F.A.; Maslennikov, A.B.; Stepanov, V.A.; Afanasyev, A.A.; Zaklyazminskaya, E.V.; Kostareva, A.A.; Pavlov, A.E.; et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Nauchno-Prakt. Zhurnal Med. Genet. 2020, 3–23. [Google Scholar]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef]
- Pauta, M.; Martinez-Portilla, R.J.; Borrell, A. Diagnostic yield of exome sequencing in fetuses with multisystem malformations: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2022, 59, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K.; et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, R.; Rizzo, G.; Khalil, A.; Alameddine, S.; Lisi, G.; Liberati, M.; Novelli, A.; D’antonio, F. Whole exome sequencing in fetuses with isolated increased nuchal translucency: A systematic review and meta-analysis. J. Matern. Neonatal Med. 2023, 36, 2193285. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.N.; Lianoglou, B.R.; Adami, R.R.; Pluym, I.D.; Holliman, K.; Duffy, J.; Downum, S.L.; Patel, S.; Faubel, A.; Boe, N.M.; et al. Exome Sequencing for Prenatal Diagnosis in Nonimmune Hydrops Fetalis. N. Engl. J. Med. 2020, 383, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, Y.; Dong, X.; Lu, G.; Cheng, G.; Qian, Y.; Ni, Q.; Zhang, P.; Yang, L.; Wu, B.; et al. Optimized trio genome sequencing (OTGS) as a first-tier genetic test in critically ill infants: Practice in China. Hum. Genet. 2020, 139, 473–482. [Google Scholar] [CrossRef] [PubMed]
No. | Phenotype | Gestational Age *, Weeks | Gene | Variant 1 (ClinVar) | Variant 2 (ClinVar) | Inheritance ** | Solo- or Trio-Based WES |
---|---|---|---|---|---|---|---|
Cases with found cause | |||||||
1 | Thoracic hypoplasia, abnormal rib shape, short tubular bones | 15–16 | FGFR3 | NM_000142.4:c.1948A>G (p.Lys650Glu) (Pathogenic) | - | de novo (AD) | trio-based |
2 | Heterotaxy syndrome: right-sided heart and stomach | 16–17 | MMP21 | NM_147191.1:c.371del (p.Pro124HisfsTer53) (Uncertain significance) | NM_147191.1:c.91C>T (p.Arg31Trp) (Uncertain significance) | genetic variant transposition (AR) | trio-based |
3 | Increased nuchal translucency, generalized edema of head and trunk, hydrothorax, omphalocele | 12–13 | PTPN11 | NM_002834.5:c.226G>C (p.Glu76Gln) (Pathogenic) | - | de novo (AD) | trio-based |
4 | Cerebellar hypoplasia, ventriculomegaly, brachycephaly | 27 | CHD7 | NM_017780.4:c.1611_1612del (Uncertain significance) | - | de novo (AD) | trio-based |
5 | Lissencephaly, ventriculomegaly, bilateral clubfoot | 27–28 | PEX1 | NM_000466.3:c.2489dup (p.Asn830fs) (Likely pathogenic) | NM_000466.3:c.1803+1G>T (Pathogenic) | genetic variant transposition (AR) | solo-based |
6 | Tuberous sclerosis | 30–31 | TSC2 | NM_000548.5:c.4416dup (p.Lys1473fs) (Pathogenic) | - | de novo (AD) | solo-based |
7 | Cleft lip and palate | 28–29 | FGF8 | NM_033163.4:c.33-2A>G (Uncertain significance) | - | n/a (AD) | solo-based |
8 | Skull shape and left ankle joint features, bilateral femoral campomelia | 18–19 | COL1A2 | NM_000089.4:c.2405G>A (p.Gly802Asp) (Pathogenic) | - | de novo (AD) | solo-based |
Cases with a possible cause found | |||||||
9 | Polydactyly postaxial left foot | 18 | PTEN | seq[GRCh37]del(10)(q23.31) chr10:g.89687197_89702520del (Uncertain significance) | seq[GRCh37]del(10)(q23.31) chr10:g.89721087_89728496del (Uncertain significance) | n/a (AD) | trio-based |
10 | Femoral shortening and curvature | 21–22 | FBN1 | NM_000138.5:c.6291_6292delGCinsTT (p.Glu2097_Leu2098delinsAspPhe) (Uncertain significance) | - | n/a (AD) | solo-based |
11 | Right-sided cleft lip and palate | 16–17 | EVC | NM_153717.3:c.2278C>T (p.Arg760Trp) (Uncertain significance) | NM_153717.3:c.1019G>A (p.Arg340Gln) (Uncertain significance) | genetic variant transposition (AR) | trio-based |
12 | Equinovarus deformity of the feet | 18–19 | NEB | NM_001164508.2:c.21796C>T (p.Pro7266Ser) (Uncertain significance) | NM_001164508.2:c.19626+63A>T (Uncertain significance) | genetic variant transposition (AR) | solo-based |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guseva, M.; Shirokova, N.; Kapitonova, O.; Gnetetskaya, V.; Blagodatskikh, K.; Tarasova, J.; Kaimonov, V.; Korbut, A.; Musatova, E. Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities. Genes 2025, 16, 547. https://doi.org/10.3390/genes16050547
Guseva M, Shirokova N, Kapitonova O, Gnetetskaya V, Blagodatskikh K, Tarasova J, Kaimonov V, Korbut A, Musatova E. Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities. Genes. 2025; 16(5):547. https://doi.org/10.3390/genes16050547
Chicago/Turabian StyleGuseva, Margarita, Natalya Shirokova, Olga Kapitonova, Valentina Gnetetskaya, Konstantin Blagodatskikh, Julia Tarasova, Vladimir Kaimonov, Alina Korbut, and Elizaveta Musatova. 2025. "Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities" Genes 16, no. 5: 547. https://doi.org/10.3390/genes16050547
APA StyleGuseva, M., Shirokova, N., Kapitonova, O., Gnetetskaya, V., Blagodatskikh, K., Tarasova, J., Kaimonov, V., Korbut, A., & Musatova, E. (2025). Application of Whole-Exome Sequencing (WES) for Prenatal Determination of Causes of Fetal Abnormalities. Genes, 16(5), 547. https://doi.org/10.3390/genes16050547