Hypermobile Ehlers–Danlos Syndrome: Diagnostic Challenges and the Role of Genetic Testing
Abstract
:1. Introduction
- Criterion 1 uses the age and sex-adjusted Beighton scoring system to assess GJH.
- Criterion 2 consists of three features (A, B, and C), of which two must be present:
- ⚬
- Feature A identifies at least five characteristics of connective tissue disorders.
- ⚬
- Feature B requires a positive family history, with one or more first-degree relatives independently meeting the hEDS diagnostic criteria.
- ⚬
- Feature C pertains to musculoskeletal complications of joint laxity, such as chronic pain, joint instability, and recurrent dislocations.
- Criterion 3 involves the exclusion of alternative diagnoses by ruling out unusual skin fragility, other heritable and acquired connective tissue disorders, and conditions mimicking hEDS [1].
2. Materials and Methods
Study Design and Population
3. Results
4. Discussion
4.1. The Role of Genetic Testing in hEDS Diagnosis
- Connective Tissue and Skeletal Disorders—Many of these monogenic disorders present with joint laxity. The presence of a personal or family history suggestive of these conditions, such as aortic disease, sudden cardiac death, retinal detachment, keratoconus, brittle bones, or significant dental anomalies, should prompt evaluation for monogenic skeletal or connective tissue disorders.
- Neuromuscular Disorders—Hypermobility of the joints and neuromuscular disorders are often interconnected. Joint laxity has been reported as a primary or secondary manifestation in disorders, such as RYR1- and SEPN1-related myopathies, emphasizing the need for genetic testing in addition to neurological assessment in these patients [7].
- Chromosomal Abnormalities—Joint laxity is a known feature in many chromosomal abnormalities such as triple X syndrome, 1q21.1 deletion syndrome, and 16p13.11 microduplication syndrome [8,9,10,11]. The American College of Medical Genetics and Genomics (ACMG) practice guidelines recommend chromosomal microarray analysis (CMA) as a first-tier test, along with comprehensive genetic testing—such as exome or genome sequencing—when evaluating individuals with developmental delays, intellectual disability, and multiple congenital anomalies [12,13]. Comprehensive genetic testing should also be considered in patients whose clinical course progresses despite standard treatment interventions. This approach may uncover genetic etiologies that could inform prognosis and guide targeted management strategies.
- Inflammatory Disorders—Studies have shown that pro-inflammatory cytokines (IL-1β, IL-6, IL-8) can compromise ligament integrity in inflammatory conditions [14]. In our cohort, a significant number of patients had underlying inflammatory or immunological disorders such as common variable immunodeficiency type 2 (CVID2) and hereditary α tryptasemia. Hereditary alpha tryptasemia (HαT) is an autosomal dominant condition with an estimated prevalence of 5.5–8% in the general population, caused by increased germline copies of TPSAB1. The individuals with extra copies of TPSAB1 have elevated serum α tryptase and present with multisystem symptoms resembling hEDS, including gastrointestinal dysmotility, autonomic dysfunction, and joint laxity [15]. Given the relatively high prevalence of HAT and significant phenotypic overlap, baseline serum tryptase measurement should be incorporated into the initial diagnostic workup for patients with suspected hEDS. If tryptase levels are elevated, confirmatory genetic testing for TPSAB1 copy number variation should be considered.
4.2. Broadening the Diagnostic Lens: Addressing Multisystemic Features in hEDS
4.3. Emerging Biomarkers and the Continued Need for Genetic Testing
4.4. A Systematic Diagnostic Approach to hEDS
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDS | Ehlers–Danlos syndrome |
hEDS | hypermobile Ehlers–Danlos syndrome |
References
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am. J. Med. Genet. Part C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Castori, M.; Tinkle, B.; Levy, H.; Grahame, R.; Malfait, F.; Hakim, A. A framework for the classification of joint hypermobility and related conditions. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Gensemer, C.; Burks, R.; Kautz, S.; Judge, D.P.; Lavallee, M.; Norris, R.A. Hypermobile Ehlers-Danlos syndromes: Complex phenotypes, challenging diagnoses, and poorly understood causes. Dev. Dyn. 2021, 250, 318–344. [Google Scholar] [CrossRef] [PubMed]
- Ritelli, M.; Chiarelli, N.; Cinquina, V.; Vezzoli, M.; Venturini, M.; Colombi, M. Looking back and beyond the 2017 diagnostic criteria for hypermobile Ehlers-Danlos syndrome: A retrospective cross-sectional study from an Italian reference center. Am. J. Med. Genet. Part A 2024, 194, 174–194. [Google Scholar] [CrossRef] [PubMed]
- Forghani, I. Updates in Clinical and Genetics Aspects of Hypermobile Ehlers Danlos Syndrome. Balk. Med. J. 2019, 36, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Ritelli, M.; Chiarelli, N.; Cinquina, V.; Bertini, V.; Piantoni, S.; Caproli, A.; Della Pina, S.E.L.; Franceschini, F.; Zarattini, G.; Gandy, W.; et al. Bridging the Diagnostic Gap for Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders: Evidence of a Common Extracellular Matrix Fragmentation Pattern in Patient Plasma as a Potential Biomarker. Am. J. Med. Genet. Part A 2025, 197, e63857. [Google Scholar] [CrossRef] [PubMed]
- Donkervoort, S.; Bonnemann, C.G.; Loeys, B.; Jungbluth, H.; Voermans, N.C. The neuromuscular differential diagnosis of joint hypermobility. Am. J. Med. Genet. Part C Semin. Med. Genet. 2015, 169, 23–42, Correction in Am. J. Med. Genet. Part C Semin. Med. Genet. 2016, 170, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Haldeman-Englert, C.R. 1q21.1 Recurrent Deletion. In GeneReviews®; [Updated 1 February 2024]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK52787/ (accessed on 4 June 2024).
- Tartaglia, N.R.; Howell, S.; Sutherland, A.; Wilson, R.; Wilson, L. A review of trisomy X (47,XXX). Orphanet J. Rare Dis. 2010, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; di Tommaso, M.; Scalini, P.; Lapi, E.; Losi, S.; Bencini, E.; Masoni, F.; Dosa, L.; Becciani, S.; de Martino, M. Triple X syndrome and puberty: Focus on the hypothalamus-hypophysis-gonad axis. Fertil. Steril. 2016, 105, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Nagamani, S.C.S.; Erez, A.; Bader, P.; Lalani, S.R.; A Scott, D.; Scaglia, F.; E Plon, S.; Tsai, C.-H.; Reimschisel, T.; Roeder, E.; et al. Phenotypic manifestations of copy number variation in chromosome 16p13.11. Eur. J. Hum. Genet. 2011, 19, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Stafford, C.F.; Sanchez-Lara, P.A. Impact of Genetic and Genomic Testing on the Clinical Management of Patients with Autism Spectrum Disorder. Genes 2022, 13, 585. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Punzi, L.; Pozzuoli, A.; Pianon, M.; Bertazzolo, N.; Oliviero, F.; Scapinelli, R. Pro-inflammatory interleukins in the synovial fluid of rheumatoid arthritis associated with joint hypermobility. Rheumatology 2001, 40, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.J. Hereditary Alpha Tryptasemia: Genotyping and Associated Clinical Features. Immunol. Allergy Clin. N. Am. 2018, 38, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.; Spurrier, A.J.; Linz, D.; Gallagher, C.; Mahajan, R.; Sanders, P.; Page, A.; Lau, D.H. Postural tachycardia syndrome: Current perspectives. Vasc. Health Risk Manag. 2017, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, T.C.; Majeroni, B.A.; Pretorius, R.; Malik, K. Fatigue: An overview. Am. Fam. Physician 2008, 78, 1173–1179. [Google Scholar] [PubMed]
- Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Akdis, D.; Brunckhorst, C.; Duru, F.; Saguner, A.M. Arrhythmogenic Cardiomyopathy: Electrical and Structural Phenotypes. Arrhythmia Electrophysiol. Rev. 2016, 5, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Link, M.S.; Calkins, H. Arrhythmogenic Right Ventricular Cardiomyopathy. N. Engl. J. Med. 2017, 376, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine and the Practice Committee for the Society for Assisted Reproductive Technology. Guidance regarding gamete and embryo donation. Fertil. Steril. 2021, 115, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
Age at Diagnosis (Year)/Sex | Genetic Test Results; Classification; Zygosity | Associated Diagnosis |
---|---|---|
Inherited connective tissue and skeletal disorders | ||
49/F | NM_005902.4(SMAD3):c.770_771del (p.Val257fs); PV; Het | LDS, type 3 (OMIM #613795) |
35/F | NM_001457.4(FLNB):c.4514+1G>A; LPV; Het | Larsen syndrome (OMIM #150250) |
31/M | NM_000501.4(ELN):c.542-2A>T; LPV; Het | Cutis Laxa (OMIM #123700) |
56/F | NM_000478.6(ALPL):c.1417G>A (p.Gly473Ser); PV; Het | HPP, adult-onset (OMIM #146300) |
19/F | NM_000478.6(ALPL):c.407G>A (p.Arg136His); PV; Het | HPP, adult-onset (OMIM #146300) |
46/F | NM_001853.4(COL9A3):c.1739dup (p.Gly581fs); PV/LPV; Het | Epiphyseal dysplasia, multiple, 3 (OMIM #600969) |
Neuromuscular disorders | ||
25/F | NM_000083.3(CLCN1):c.1238T>G (p.Phe413Cys); PV/LPV; Het | Myotonia congenital (OMIM #160800) |
49/F | NM_001849.4(COL6A2):c.2611G>A (p.Asp871Asn); PV/LPV; Het | Collagen VI-Related Myopathy (OMIM #620725) |
44/M | NM_000080.4(CHRNE):c.764C>T (p.Ser255Leu); PV/LPV; Het | SCCMS (OMIM #605809) |
53/F | NM_000070.3(CAPN3):c.1303G>A (p.Glu435Lys); PV/LPV; Het | LGMDD4 (OMIM #618129) |
69/F | NM_002693.3(POLG):c.1760C>T (p.Pro587Leu); PV/LPV; Het | POLG-related spectrum disorder (OMIM #157640) |
61/F | NM_002693.3(POLG):c.2243G>C (p.Trp748Ser); PV/LPV; Het | POLG-related spectrum disorder (OMIM #157640) |
32/F | NM_002693.3(POLG):c.1399G>A (p.Ala467Thr); PV; Heterozygous ATXN8OS:CTG[156] Repeat expansion; PV; Het NM_053274.3(GLMN):c.554_558delinsG (p.Lys185fs); PV; Het | POLG-related spectrum disorder (OMIM #157640) SCA type 8 (OMIM #608768) Glomuvenous malformation (OMIM #138000) |
43/F | PABPN1: GCG[11] Alanine repeat expansion; LPV; Het | Oropharyngeal muscular dystrophy (OMIM #164300) |
26/F | ATXN8OS: CTG[101] Repeat Expansion; PV; Het | SCA type 8 (OMIM #608768) |
37/F | ATXN10: ATTCT[2011] Repeat Expansion; PV; Het | SCA type 10 (OMIM #603516) |
51/F | ATXN10: ATTCT[793] Repeat Expansion; PV; Het | SCA type 10 (OMIM #603516) |
Chromosomal abnormalities and copy number variations | ||
16/F | NC_000016.10:g.(28796097_28796872)_(29032542_29032651)dup | 16p11.2 duplication syndrome (OMIM #614671) |
28/F | arr[GRCh37] 16p13.11(15493046_16362651)x3 NC_000016.10:g.15493046_16362651dup | 16p13.11 microduplication syndrome (ORPHA:261243) |
26/F | seq[GRCh38] del(15)(q13.2q13.3)pat NC_000015.10:g.(30,066,060_30,622,982)_(32,149,374_32,632,609)del | 15q13.3 deletion syndrome (OMIM #612001) |
14/F | arr[GRCh37] 1q21.1(144893419_145888926)x1 NC_000001.10:g.(144893419_145888926)del | 1q21.1 deletion syndrome (IMIM #612474) |
49/F | Karyotype: monosomy X in 24% of the reviewed metaphase cells (12/50) | Mosaic Turner syndrome (ORPHA:881) |
32/F | Karyotype: 47, XXX NM_004415.4(DSP):c.4531C>T (p.Gln1511Ter); PV; Het | Triple X syndrome (ORPHA:3375) ARVD8 (OMIM #607450) |
31/F | Karyotype: 47, XXX | Triple X syndrome (ORPHA:3375) |
Disorders of the Immune System | ||
36/F | NM_012452.3(TNFRSF13B):c.542C>A (p.Ala181Glu); PV/LPV; Het | CVID2 (OMIM #240500) |
49/F | NM_012452.3(TNFRSF13B):c.542C>A (p.Ala181Glu); PV/LPV; Het | CVID2 (OMIM #240500) |
18/F | NM_012452.3(TNFRSF13B):c.204dup (p.Leu69fs); PV/LPV; Het | CVID2 (OMIM #240500) |
58/F | NM_012452.3(TNFRSF13B):c.204dup (p.Leu69fs); PV/LPV; Het | CVID2 (OMIM #240500) |
42/F | NM_012452.3(TNFRSF13B):c.542C>A (p.Ala181Glu); PV/LPV; Het | CVID2 (OMIM #240500) |
40/F | NM_012452.3(TNFRSF13B):c.310T>C (p.Cys104Arg); PV/LPV; Het | CVID2 (OMIM #240500) |
51/F | NM_012452.3(TNFRSF13B):c.310T>C (p.Cys104Arg); PV/LPV; Het NM_003900.5(SQSTM1):c.1175C>T (p.Pro392Leu); PV/LPV; Het | CVID2 (OMIM #240500) SQSTM1-related condition (OMIM #617158) |
21/F | NM_000243.3(MEFV):c.2177T>C (p.Val726Ala); PV/LPV; Het | FMF, AD (OMIM #134610) |
20/F | NM_000383.4(AIRE):c.769C>T (p.Arg257Ter); PV; Het | APS1 (OMIM #240300) |
48/F | NM_001122764.3(PPOX):c.1092_1093del (p.Arg364fs); PV; Het | Porphyria variegata (OMIM #176200) |
59/F 54/F 54/F 49/M 46/F 21/F 51/F 53/F 11/M 74/F 46/M 28/F | Increased copies of TPSAB1 | HαT |
Metabolic disorders | ||
42/F | NM_000410.4(HFE):c.187C>G (p.His63Asp); PV/LPV; Het NM_000410.4(HFE):c.845G>A (p.Cys282Tyr); PV/LPV; Het | Hemochromatosis type 1 (OMIM #235200) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forghani, I.; See, J.; McGonigle, W.C. Hypermobile Ehlers–Danlos Syndrome: Diagnostic Challenges and the Role of Genetic Testing. Genes 2025, 16, 530. https://doi.org/10.3390/genes16050530
Forghani I, See J, McGonigle WC. Hypermobile Ehlers–Danlos Syndrome: Diagnostic Challenges and the Role of Genetic Testing. Genes. 2025; 16(5):530. https://doi.org/10.3390/genes16050530
Chicago/Turabian StyleForghani, Irman, Julia See, and William C. McGonigle. 2025. "Hypermobile Ehlers–Danlos Syndrome: Diagnostic Challenges and the Role of Genetic Testing" Genes 16, no. 5: 530. https://doi.org/10.3390/genes16050530
APA StyleForghani, I., See, J., & McGonigle, W. C. (2025). Hypermobile Ehlers–Danlos Syndrome: Diagnostic Challenges and the Role of Genetic Testing. Genes, 16(5), 530. https://doi.org/10.3390/genes16050530