Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review
Abstract
:1. Introduction
2. Molecular Structure of HLA System
3. HLA System Genetics, Inheritance, and Nomenclature
4. HLA Typing Methods
5. Comprehensive HLA Database Resources
- IPD-IMGT/HLA: Originally part of the international ImMunoGeneTics (IMGT) project, it houses HLA sequences, including the official entries designated by the WHO Nomenclature Committee for Factors of the HLA System.
- IPD-KIR: Allelic sequences of immunoglobulin-like killer cell receptors.
- IPD-MHC: Sequences of major histocompatibility complexes of different species.
- IPD-NHKIR: A centralised repository for non-human KIR (NHKIR) sequences.
- IPD-HPA: A centralised repository for the allo-compatible human platelet antigens (HPAs).
- IPD-ESTDAB (European Tumor Cell Database): Provides for online searches on HLA-typed, immunologically characterized tumor cells.
6. Frequent HLA Alleles in the Population of Kazakhstan
- The Turkestan region is home to the most ethnic Kazakhs (1.5 million) and Uzbeks (378,000).
- Most Russians (428,000) are found in the Almaty region (South Kazakhstan).
- The Kostanay region is home to most Kazakhstani Ukrainians (86,000).
- Nearly all Uighurs (297,000) live in the Almaty region [32].
7. HLA Profile of Russian Population of Kazakhstan
8. HLA Profile of Uzbek Population of Kazakhstan
9. HLA Profile of Ukrainian Population of Kazakhstan
10. HLA Profile of German Population of Kazakhstan
11. HLA Profile of Tatar Population of Kazakhstan
12. HLA Profile of Korean Population of Kazakhstan
13. Distribution of HLA Alleles Among Kazakh Population of Kazakhstan
14. Overall Assessment and Significance
15. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurley, C.K. Naming HLA diversity: A review of HLA nomenclature. Hum. Immunol. 2021, 82, 457–465. [Google Scholar] [CrossRef]
- Sanchez-Mazas, A.; Nunes, J.M.; Middleton, D.; Sauter, J.; Buhler, S.; McCabe, A.; Hofmann, J.; Baier, D.M.; Schmidt, A.H.; Nicoloso, G.; et al. Common and well-documented HLA alleles over all of Europe and within European sub-regions: A catalogue from the European Federation for Immunogenetics. HLA 2017, 89, 104–113. [Google Scholar] [CrossRef]
- Choo, S.Y. The HLA system: Genetics, immunology, clinical testing, and clinical implications. Yonsei Med. J. 2007, 48, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Hamed, C.T.; Meiloud, G.; Veten, F.; Hadrami, M.; Ghaber, S.M.; Boussaty, E.C.; Habti, N.; Houmeida, A. HLA class I (-A, -B, -C) and class II (-DR, -DQ) polymorphism in the Mauritanian population. BMC Med. Genet. 2018, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Kulski, J.K. HLA Genetics for the Human Diseases. Adv. Exp. Med. Biol. 2024, 1444, 237–258. [Google Scholar] [PubMed]
- Shiina, T.; Hosomichi, K.; Inoko, H.; Kulski, J.K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009, 54, 15–39. [Google Scholar] [CrossRef]
- Meyer, D.; C Aguiar, V.R.; Bitarello, B.D.; C Brandt, D.Y.; Nunes, K. A genomic perspective on HLA evolution. Immunogenetics 2018, 70, 5–27. [Google Scholar] [CrossRef]
- Posadas-Cantera, S.; Mitsuiki, N.; Emmerich, F.; Patiño, V.; Lorenz, H.M.; Neth, O.; Dybedal, I.; Taskén, K.; Schäffer, A.A.; Grimbacher, B.; et al. The effect of HLA genotype on disease onset and severity in CTLA-4 insufficiency. Front. Immunol. 2025, 15, 1447995. [Google Scholar] [CrossRef]
- Arrieta-Bolaños, E.; Hernández-Zaragoza, D.I.; Barquera, R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front. Genet. 2023, 14, 866407. [Google Scholar] [CrossRef]
- Geng, J.; Raghavan, M. Conformational sensing of major histocompatibility complex (MHC) class I molecules by immune receptors and intracellular assembly factors. Curr. Opin. Immunol. 2021, 70, 67–74. [Google Scholar] [CrossRef]
- Harton, J.; Jin, L.; Hahn, A.; Drake, J. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules. F1000Research 2016, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Temme, S.; Temme, N.; Koch, N. Assembly, intracellular transport, and release of MHC class II peptide receptors. Methods Mol. Biol. 2019, 1988, 297–314. [Google Scholar] [PubMed]
- Kulski, J.K.; Suzuki, S.; Shiina, T. Haplotype shuffling and dimorphic transposable elements in the human extended major histocompatibility complex class II region. Front. Genet. 2021, 12, 665899. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Maccari, G.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Robinson, J.; Marsh, S.G.E. The IPD-IMGT/HLA Database. Nucleic Acids Res. 2023, 51, D1053–D1060. [Google Scholar] [CrossRef]
- Marsh, S.G.E.; WHO Nomenclature Committee for Factors of the HLA System. Nomenclature for factors of the HLA system, Update July, August and September 2024. HLA 2024, 104, e15732. [Google Scholar] [CrossRef]
- Bozón, M.V.; Delgado, J.C.; Turbay, D.; Salazar, M.; Granja, C.B.; Alosco, S.M.; Dupont, B.; Yunis, E.J. Comparison of HLA-A antigen typing by serology with two polymerase chain reaction based DNA typing methods: Implications for proficiency testing. Tissue Antigens 1996, 47, 512–518. [Google Scholar] [CrossRef]
- Choi, H.; Choi, E.J.; Kim, H.J.; Baek, I.C.; Won, A.; Park, S.J.; Kim, T.-G.; Chung, Y.-J. A walk through the development of human leukocyte antigen typing: From serologic techniques to next-generation sequencing. Clin. Transplant. Res. 2024, 38, 294–308. [Google Scholar] [CrossRef]
- Madden, K.; Chabot-Richards, D. HLA testing in the molecular diagnostic laboratory. Virchows Arch. 2019, 474, 139–147. [Google Scholar] [CrossRef]
- Dunckley, H. HLA typing by SSO and SSP methods. Methods Mol. Biol. 2012, 882, 9–25. [Google Scholar]
- Liu, C. A long road/read to rapid high-resolution HLA typing: The nanopore perspective. Hum. Immunol. 2021, 82, 488–495. [Google Scholar] [CrossRef]
- Gandhi, M.J.; Ferriola, D.; Huang, Y.; Duke, J.L.; Monos, D. Targeted next-generation sequencing for human leukocyte antigen typing in a clinical laboratory: Metrics of relevance and considerations for its successful implementation. Arch. Pathol. Lab. Med. 2017, 141, 806–812. [Google Scholar] [CrossRef]
- Stockton, J.D.; Nieto, T.; Wroe, E.; Poles, A.; Inston, N.; Briggs, D.; Beggs, A.D. Rapid, highly accurate and cost-effective open-source simultaneous complete HLA typing and phasing of class I and II alleles using nanopore sequencing. HLA 2020, 96, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Barker, D.J.; Marsh, S.G.E. 25 years of the IPD-IMGT/HLA Database. HLA 2024, 103, e15549. [Google Scholar] [CrossRef]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [PubMed]
- Gonzalez-Galarza, F.F.; McCabe, A.; Santos, E.J.M.D.; Jones, J.; Takeshita, L.; Ortega-Rivera, N.D.; Del Cid-Pavon, G.M.; Ramsbottom, K.; Ghattaoraya, G.; Alfirevic, A.; et al. Allele frequency net database (AFND) 2020 update: Gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2020, 48, D783–D788. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.A.; Bochtler, W.; Robinson, J.; Sauter, J.; Askar, M.; Houdova, L.; Melchers, M.; Schmidt, A.H.; Spierings, E.; Urban, C.; et al. World Marrow Donor Association guidelines for the reporting of novel HLA alleles. HLA 2023, 102, 62–64. [Google Scholar] [CrossRef]
- Schöne, B.; Fuhrmann, M.; Surendranath, V.; Schmidt, A.H.; Lange, V.; Schöfl, G. Submitting Novel Full-Length HLA, MIC, and KIR Alleles with TypeLoader2. Methods Mol. Biol. 2024, 2809, 157–169. [Google Scholar]
- Maccari, G.; Robinson, J.; Hammond, J.A.; Marsh, S.G.E. The IPD Project: A centralised resource for the study of polymorphism in genes of the immune system. Immunogenetics 2020, 72, 49–55. [Google Scholar] [CrossRef]
- Zhamantayev, O.; Smagulov, N.; Tykezhanova, G.; Kenzhekeyeva, M.; Karshalova, G. Economic and healthcare influences on circulatory diseases in Kazakhstan: A retrospective ecological study. J. Health Popul. Nutr. 2024, 43, 196. [Google Scholar] [CrossRef]
- Smailov, A.A. (Ed.) Analytical Report: Results of the 2009 National Population Census of the Republic of Kazakhstan; The Agency on Statistics of the Republic of Kazakhstan: Astana, Kazakhstan, 2011; 64p. [Google Scholar]
- Hajjej, A.; Abdrakhmanova, S.; Turganbekova, A.; Almawi, W.Y. Distribution of HLA Class I and Class II alleles and haplotypes in German and Uzbek minorities in Kazakhstan, and relationship to other populations. HLA 2020, 96, 615–620. [Google Scholar] [CrossRef]
- Hajjej, A.; Abdrakhmanova, S.; Turganbekova, A.; Almawi, W.Y. HLA allele and haplotype frequencies in Kazakhstani Russians and their relationship with other populations. HLA 2023, 101, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Peyrouse, S. Migration flows of Russians between Central Asia and Russia (French). Espace Popul. Soc. 2007, 31, 47–57. [Google Scholar] [CrossRef]
- Gurieva, S.; Kõiv, K.; Tararukhina, O. Migration and adaptation as indicators of social mobility migrants. Behav. Sci. 2020, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Kuranov, A.B.; Vavilov, M.N.; Abildinova, G.Z.h.; Akilzhanova, A.R.; Iskakova, A.N.; Zholdybayeva, E.V.; Boldyreva, M.N.; Müller, C.A.; Momynaliev, K.T. Polymorphisms of HLA-DRB1, -DQA1 and -DQB1 in inhabitants of Astana, the capital city of Kazakhstan. PLoS ONE 2014, 9, e115265. [Google Scholar] [CrossRef]
- Hajjej, A.; Abdrakhmanova, S.; Turganbekova, A.; Almawi, W.Y. Origin of the Ukrainian minority of Kazakhstan as inferred from HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes distribution. HLA 2021, 98, 525–535. [Google Scholar] [CrossRef]
- Sanchez-Mazas, A.; Nunes, J.M.; PGAE HLA Consortium of the 18th International HLA and Immunogenetics Workshop. The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract. Res. Clin. Haematol. 2024, 37, 101559. [Google Scholar] [CrossRef]
- Agdzhoyan, A.T.; Balanovska, E.V.; Padyukova, A.D.; Dolinina, D.O.; Kuznetsova, M.A.; Zaporozhchenko, V.V.; Skhalyakho, R.A.; Koshel, S.M.; Zhabagin, M.K.; Yusupov, Y.M.; et al. Gene pool of Siberian Tatars: Five ways of origin for five subethnic groups. Mol. Biol. 2016, 50, 978–991. [Google Scholar] [CrossRef]
- Hajjej, A.; Abdrakhmanova, S.; Turganbekova, A.; Almawi, W.Y. Diversity of HLA-A, -B, -C, -DRB1, and -DQB1 alleles and haplotypes in Kazakhstani Tatar population and genetic relatedness to other populations. Gene 2024, 896, 148062. [Google Scholar] [CrossRef]
- Almawi, W.Y.; Hajjej, A.; Abdrakhmanova, S.; Turganbekova, A. Distribution of HLA-A, -C, -B, -DRB1, and -DQB1 polymorphisms in the Korean minority in Kazakhstan, and relatedness to neighboring and distant populations. Gene 2022, 823, 146386. [Google Scholar] [CrossRef]
- White, A.E.; de-Dios, T.; Carrión, P.; Bonora, G.L.; Llovera, L.; Cilli, E.; Lizano, E.; Khabdulina, M.K.; Tleugabulov, D.T.; Olalde, I.; et al. Genomic analysis of 18th-century Kazakh individuals and their oral microbiome. Biology 2021, 10, 1324. [Google Scholar] [CrossRef]
- Khussainova, E.; Kisselev, I.; Iksan, O.; Bekmanov, B.; Skvortsova, L.; Garshin, A.; Kuzovleva, E.; Zhaniyazov, Z.; Zhunussova, G.; Musralina, L.; et al. Genetic relationship among the Kazakh people based on Y-STR markers reveals evidence of genetic variation among Tribes and Zhuz. Front. Genet. 2022, 12, 801295. [Google Scholar] [CrossRef]
- Zhabagin, M.; Bukayev, A.; Dyussenova, Z.; Zhuraliyeva, A.; Tashkarayeva, A.; Zhunussova, A.; Aidarov, B.; Darmenov, A.; Akilzhanova, A.; Schamiloglu, U.; et al. Y-Chromosomal insights into the paternal genealogy of the Kerey tribe have called into question their descent from the Stepfather of Genghis Khan. PLoS ONE 2024, 19, e0309080. [Google Scholar] [CrossRef] [PubMed]
- Mizuki, M.; Ohno, S.; Ando, H.; Sato, T.; Imanishi, T.; Gojobori, T.; Ishihara, M.; Ota, M.; Geng, Z.; Geng, L.; et al. Major histocompatibility complex class II alleles in Kazak and Han populations in the Silk Route of northwestern China. Tissue Antigens 1997, 50, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Turganbekova, A.; Zhanzakova, Z.; Par-khomenko, I.; Saduakas, Z.; Komarova, D.; Siyazbek, A. HLA-A, -B, -C, -DRB1 and -DQB1 allele frequencies of the national register of the Republic of Kazakhstan. HLA 2021, 97, 326. [Google Scholar]
Locus | Allele Number | % Heterozygous | % Homozygous | Common Alleles |
---|---|---|---|---|
HLA-A | 101 | 86 | 14 | A*02:01, A*24:02, A*01:01 |
HLA-B | 155 | 92 | 8 | B*07:02, B*51:01, B*13:02 |
HLA-C | 76 | 89 | 11 | C*06:02, C*07:02, C*04:01 |
HLA-DRB1 | 94 | 90 | 10 | DRB1*07:01, DRB1*03:01, DRB1*15:01 |
HLA-DQB1 | 41 | 87 | 13 | DQB1*03:01, DQB1*02:01, DQB1*06:03 |
HLA Class | Haplotype | Frequency | Percent |
---|---|---|---|
A~C~B | A*01:01~C*07:01~B*15:17 | 30 | 1.6 |
A*02:01~C*07:02~B*08:01 | 26 | 1.4 | |
A*03:01~C*07:02~B*08:01 | 26 | 1.4 | |
A*02:01~C*06:02~B*14:02 | 25 | 1.3 | |
A*01:01~C*01:02~B*07:02 | 20 | 1.1 | |
A*03:0~C*04:01~B*35:02 | 21 | 1.1 | |
A*26:01~C*12:03~B*39:01 | 18 | 1.0 | |
DRB1~DQB1 | DRB1*15:01~DQB1*06:02 | 166 | 8.8 |
DRB1*03:01~DQB1*02:01 | 135 | 7.2 | |
DRB1*11:01~DQB1*03:01 | 98 | 5.2 | |
DRB1*13:01~DQB1*06:03 | 93 | 5 | |
DRB1*07:01~DQB1*02:01 | 88 | 4.7 | |
DRB1*01:01~DQB1*05:01 | 76 | 4.1 | |
DRB1*07:01~DQB1*02:02 | 60 | 3.2 | |
DRB1*11:04~DQB1*03:01 | 50 | 2.7 | |
DRB1*16:01~DQB1*05:02 | 49 | 2.6 | |
DRB1*08:01~DQB1*04:02 | 44 | 2.3 | |
A~C~B~DRB1~DQB1 | A*01:01~C*07:01~B*06:01~DRB1*11:01~DQB1*03:01 | 25 | 1.3 |
A*01:01~C*08:01~B*07:01~DRB1*03:01~DQB1*04:01 | 24 | 1.3 | |
A*01:01~C*08:01~B*04:01~DRB1*07:01~DQB1*03:03 | 9 | 0.5 | |
A*02:01~C*13:02~B*06:02~DRB1*07:01~DQB1*02:02 | 9 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turganbekova, A.; Abdrakhmanova, S.; Masalimov, Z.; Almawi, W.Y. Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review. Genes 2025, 16, 342. https://doi.org/10.3390/genes16030342
Turganbekova A, Abdrakhmanova S, Masalimov Z, Almawi WY. Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review. Genes. 2025; 16(3):342. https://doi.org/10.3390/genes16030342
Chicago/Turabian StyleTurganbekova, Aida, Saniya Abdrakhmanova, Zhaksylyk Masalimov, and Wassim Y. Almawi. 2025. "Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review" Genes 16, no. 3: 342. https://doi.org/10.3390/genes16030342
APA StyleTurganbekova, A., Abdrakhmanova, S., Masalimov, Z., & Almawi, W. Y. (2025). Genetic Diversity and Ethnic Tapestry of Kazakhstan as Inferred from HLA Polymorphism and Population Dynamics: A Comprehensive Review. Genes, 16(3), 342. https://doi.org/10.3390/genes16030342