The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside
Abstract
1. Introduction
2. miRNAs in Inflammatory Nasal Diseases
2.1. Chronic Rhinosinusitis (CRS)
2.2. Allergic Rhinitis (AR)
3. miRNAs in Oncological Nasal Diseases
3.1. Benign Tumors
3.2. Malignant Tumors
4. miRNA-Based Therapy: An Approach for Sinonasal Cancer Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
miRNAs | microRNAs |
MVB | multivesicular body |
CRS | chronic rhinosinusitis |
AR | allergic rhinitis |
SNSCC | sinonasal squamous cell carcinoma |
EPOS | European Position Paper on Rhinosinusitis and Nasal Polyps |
HRQoL | health-related quality of life |
CRSwNP | chronic rhinosinusitis with nasal polyps |
CRSsNP | chronic rhinosinusitis without nasal polyps |
IL | interleukin |
TNF-α | tumor necrosis factor α |
EMT | epithelial–mesenchymal transition |
CARAS | combined allergic rhinitis and asthma syndrome |
Treg Th | regulatory T cells T helper cell |
FOXP3 | forkhead box P3 |
IFN-γ | interferon γ |
HPV | human papillomavirus |
SNADC | sinonasal adenocarcinoma |
SNEC | sinonasal neuroendocrine carcinoma |
SNUC | sinonasal undifferentiated carcinoma |
ITAC | intestinal-type sinonasal adenocarcinoma |
NGS | next-generation sequencing |
TFs | transcriptional factors |
KLF2 | Krüppel-like factor 2 |
ETS2 | ETS proto-oncogene 2 |
EBF1 | early B cell factor 1 |
IRS1 | insulin receptor substrate-1 |
VEGF | vascular endothelial growth factor |
FDA | Food and Drug Administration |
NSCLC | non-small cell lung cancer |
References
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R.S.; Malakar, A.K.; Chakraborty, S. Interplay between miRNAs and human diseases. J. Cell. Physiol. 2018, 233, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Tüfekci, K.U.; Oner, M.G.; Meuwissen, R.L.; Genç, S. The role of microRNAs in human diseases. Methods Mol. Biol. 2014, 1107, 33–50. [Google Scholar] [PubMed]
- Deveci, G.; Capasso, R.; Ağagündüz, D. Xeno-miRs and Circulating miRNAs as Novel Biomarkers in Certain Diseases. Biologics 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Tahamtan, A.; Samadizadeh, S.; Salimi, V.; Natarelli, L.; Nakstad, B. Editorial: miRNAs and inflammation: From biogenesis to therapeutic option. Front. Immunol. 2023, 14, 1296589. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, W. MicroRNAs: Biomarkers, Diagnostics, and Therapeutics. Methods Mol. Biol. 2017, 1617, 57–67. [Google Scholar] [PubMed]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Mamalo, A.S.; Alivirdiloo, V.; Sadeghnejad, A.; Hajiabbasi, M.; Gargari, M.K.; Valilo, M. Potential roles of the exosome/microRNA axis in breast cancer. Pathol. Res. Pract. 2023, 251, 154845. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.P.S.; Hall, D.; Chilian, W.M.; Chia, Y.C.; Mohd Zain, S.; Lim, H.M.; Kumar, D.N.; Ching, S.M.; Low, T.Y.; Md Noh, M.F.; et al. Exosomal microRNAs in the development of essential hypertension and its potential as biomarkers. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Gao, Q.; Ping, D.; Wang, Y.; Wu, W.; Lin, X.; Fang, Y.; Zhang, J.; Shao, A. The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2020, 2020, 3232869. [Google Scholar] [CrossRef] [PubMed]
- Huang-Doran, I.; Zhang, C.Y.; Vidal-Puig, A. Extracellular Vesicles: Novel Mediators of Cell Communication in Metabolic Disease. Trends Endocrinol. Metab. 2017, 28, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Brandao, B.B.; Lino, M.; Kahn, C.R. Extracellular miRNAs as mediators of obesity-associated disease. J. Physiol. 2022, 600, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Won, G.Y.; Fukuoka, Y. MicroRNAs associated with exercise and diet: A systematic review. Physiol. Genomics 2015, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Casado-Bedmar, M.; Viennois, E. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J. Crohns Colitis 2022, 16, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, D.Z.; Jickling, G.C.; Sharp, F.R.; Yin, K.J. MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow. Metab. 2018, 38, 1125–1148. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Sang, H.; Wei, S.; Li, Y.; Jin, D.; Zhu, X.; Li, X.; Dang, Y.; Zhang, G. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol. Cancer 2020, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Nguyen, H.T.; Nguyen, X.H.; Do, X.H.; Mai, B.T.; Ngoc Nguyen, H.T.; Trang Than, U.T.; Nguyen, T.H. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023, 9, 22080. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA and ER stress in cancer. Semin. Cancer Biol. 2021, 75, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, Y.; Xu, L.; Jiang, T.; Tang, C.; Yin, C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano 2021, 15, 8267–8282. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.L.C.; Tamashiro, E.; Santos, A.R.D.; Martins, R.B.; Faria, F.M.; Silva, L.E.C.M.; Torrieri, R.; de C Ruy, P.; Silva, W.A., Jr.; Arruda, E.; et al. miRNA-205-5p can be related to T2-polarity in Chronic Rhinosinusitis with Nasal Polyps. Rhinology 2021, 59, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wang, X.; Qu, X.; Lv, C. Transcription Factor Specificity Protein 1 Regulates Inflammation and Fibrin Deposition in Nasal Polyps Via the Regulation of microRNA-125b and the Wnt/β-catenin Signaling Pathway. Inflammation 2022, 45, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kang, X.; Xiong, Y.; Luo, Q.; Dai, D.; Ye, J. Gene Expression Profiles of Circular RNAs and MicroRNAs in Chronic Rhinosinusitis With Nasal Polyps. Front. Mol. Biosci. 2021, 8, 643504. [Google Scholar] [CrossRef]
- Xia, G.; Bao, L.; Gao, W.; Liu, S.; Ji, K.; Li, J. Differentially Expressed miRNA in Inflammatory Mucosa of Chronic Rhinosinusitis. J. Nanosci. Nanotechnol. 2015, 15, 2132–2139. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, Y.N.; Li, H.B.; Hu, C.Y.; Wang, N.; Cao, P.P.; Liao, B.; Lu, X.; Cui, Y.H.; Liu, Z. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am. J. Respir. Crit. Care Med. 2012, 185, 140–151. [Google Scholar] [CrossRef]
- Ma, Z.X.; Tan, X.; Shen, Y.; Ke, X.; Yang, Y.C.; He, X.B.; Wang, Z.H.; Dai, Y.B.; Hong, S.L.; Hu, G.H. MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm. Res. 2015, 64, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Gata, A.; Neagoe, I.B.; Leucuta, D.C.; Budisan, L.; Raduly, L.; Trombitas, V.E.; Albu, S. MicroRNAs: Potential Biomarkers of Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. Medicina 2023, 59, 550. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Lv, H.; Dou, X.; Cao, Z. Nuclear Factor κB/MicroRNA-155 Upregulates the Expression Pattern of Cytokines in Regulating the Relapse of Chronic Sinusitis with Nasal Polyps and the Underlying Mechanism of Glucocorticoid. Med. Sci. Monit. 2020, 26, 923618. [Google Scholar] [CrossRef]
- Bu, X.; Wang, M.; Luan, G.; Wang, Y.; Wang, C.; Zhang, L. Integrated miRNA and mRNA expression profiling reveals dysregulated miRNA-mRNA regulatory networks in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2021, 11, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Xia, M.; Zhang, Y.J.; Jin, P.; Zhao, L.; Zhang, J.; Li, T.; Zhou, X.M.; Tu, Y.Y.; Kong, F.; et al. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem. Biophys. Res. Commun. 2018, 500, 145–151. [Google Scholar] [CrossRef]
- Korde, A.; Ahangari, F.; Haslip, M.; Zhang, X.; Liu, Q.; Cohn, L.; Gomez, J.L.; Chupp, G.; Pober, J.S.; Gonzalez, A.; et al. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J. Allergy Clin. Immunol. 2020, 145, 550–562. [Google Scholar] [CrossRef]
- Qing, X.; Zhang, Y.; Peng, Y.; He, G.; Liu, A.; Liu, H. Mir-142-3p Regulates Inflammatory Response by Contributing to Increased TNF-α in Chronic Rhinosinusitis With Nasal Polyposis. Ear Nose Throat J. 2021, 100, 50–56. [Google Scholar] [CrossRef]
- Luo, X.Q.; Shao, J.B.; Xie, R.D.; Zeng, L.; Li, X.X.; Qiu, S.Q.; Geng, X.R.; Yang, L.T.; Li, L.J.; Liu, D.B.; et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis. Oncotarget 2017, 8, 48915–48921. [Google Scholar] [CrossRef] [PubMed]
- Luan, G.; Wang, M.; Yuan, J.; Bu, X.; Wang, Y.; Ying, S.; Wang, C.; Zhang, L. MicroRNA-21-5p promotes mucosal type 2 inflammation via regulating GLP1R/IL-33 signaling in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2022, 150, 1460–1475. [Google Scholar] [CrossRef]
- Yang, N.; Cheng, H.; Mo, Q.; Zhou, X.; Xie, M. miR 155 5p downregulation inhibits epithelial to mesenchymal transition by targeting SIRT1 in human nasal epithelial cells. Mol. Med. Rep. 2020, 22, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhu, G.; Yuan, W.; Xiao, Z.A. TGF-β1 Induces Epithelial-Mesenchymal Transition of Chronic Sinusitis with Nasal Polyps through MicroRNA-21. Int. Arch. Allergy Immunol. 2019, 179, 304–319. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, C.; Shi, Y.; Wang, Z.; Zhou, L.; Zhang, Q.; Mao, Z. MiR-4454 in Combined Allergic Rhinitis and Asthma Syndrome (CARAS): Clinical significance and mechanistic insights into airway inflammation. Cell Mol. Biol. 2024, 70, 225–232. [Google Scholar]
- Panganiban, R.P.; Wang, Y.; Howrylak, J.; Chinchilli, V.M.; Craig, T.J.; August, A.; Ishmael, F.T. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J. Allergy Clin. Immunol. 2016, 137, 1423–1432. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Liao, B.; Liu, Y.H.; Wang, Z.; Zhu, X.H.; Chen, X.B.; Wang, M.Q. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4097–4109. [Google Scholar] [PubMed]
- Liu, Q.; Shen, Y.; Xiao, Y.; Xiang, H.; Chu, L.; Wang, T.; Liu, H.; Tan, G. Increased miR-124-3p alleviates type 2 inflammatory response in allergic rhinitis via IL-4Rα. Inflamm. Res. 2022, 71, 1271–1282. [Google Scholar] [CrossRef]
- Long, S.; Zhang, H. MIR-181A-5P Attenuates Ovalbumin-Induced Allergic Inflammation in Nasal Epithelial Cells by Targeting IL-33/P38 MAPK Pathway. Clin. Investig. Med. 2021, 44, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kakizaki, T.; Hatakeyama, H.; Nakamaru, Y.; Takagi, D.; Mizumachi, T.; Sakashita, T.; Kano, S.; Homma, A.; Fukuda, S. Role of microRNA-296-3p in the malignant transformation of sinonasal inverted papilloma. Oncol. Lett. 2017, 14, 987–992. [Google Scholar] [CrossRef]
- Teng, Y.; Li, Y.; Lin, Z.; Gao, Y.; Cao, X.; Lou, X.; Lin, F.; Li, Y. Analysis of miRNA expression profiling identifies miR-214-3p as a novel biomarker in sinonasal inverted papilloma. Epigenomics 2018, 10, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Tomasetti, M.; Monaco, F.; Amati, M.; Rubini, C.; Foschini, M.P.; Sollini, G.; Gioacchini, F.M.; Pasquini, E.; Santarelli, L. NGS-based miRNome identifies miR-449 cluster as marker of malignant transformation of sinonasal inverted papilloma. Oral. Oncol. 2021, 122, 105554. [Google Scholar] [CrossRef] [PubMed]
- Lerner, C.; Wemmert, S.; Schick, B. Preliminary analysis of different microRNA expression levels in juvenile angiofibromas. Biomed. Rep. 2014, 2, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Tomasetti, M.; Monaco, F.; Amati, M.; Rubini, C.; Sollini, G.; Bajraktari, A.; Gioacchini, F.M.; Santarelli, L.; Pasquini, E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2022, 44, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, M.; Monaco, F.; Rubini, C.; Rossato, M.; De Quattro, C.; Beltrami, C.; Sollini, G.; Pasquini, E.; Amati, M.; Goteri, G.; et al. AGO2-RIP-Seq reveals miR-34/miR-449 cluster targetome in sinonasal cancers. PLoS ONE 2024, 19, e0295997. [Google Scholar] [CrossRef]
- Tomasetti, M.; Re, M.; Monaco, F.; Gaetani, S.; Rubini, C.; Bertini, A.; Pasquini, E.; Bersaglieri, C.; Bracci, M.; Staffolani, S.; et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: Exosomal transfer of MiR-126 promotes anti-tumour responses. BMC Cancer 2018, 18, 896. [Google Scholar] [CrossRef]
- Qian, Y.; Teng, Y.; Li, Y.; Lin, X.; Guan, M.; Li, Y.; Cao, X.; Gao, Y. MiR-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting Bcl-2 and IGF1R. Biochem. Biophys. Res. Commun. 2019, 518, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Nohata, N.; Hanazawa, T.; Kikkawa, N.; Sakurai, D.; Fujimura, L.; Chiyomaru, T.; Kawakami, K.; Yoshino, H.; Enokida, H.; Nakagawa, M.; et al. Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br. J. Cancer 2011, 105, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Nohata, N.; Hanazawa, T.; Kikkawa, N.; Sakurai, D.; Sasaki, K.; Chiyomaru, T.; Kawakami, K.; Yoshino, H.; Enokida, H.; Nakagawa, M.; et al. Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 2011, 39, 1099–1107. [Google Scholar]
- Kinoshita, T.; Nohata, N.; Yoshino, H.; Hanazawa, T.; Kikkawa, N.; Fujimura, L.; Chiyomaru, T.; Kawakami, K.; Enokida, H.; Nakagawa, M.; et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 2012, 40, 185–193. [Google Scholar]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef] [PubMed]
- Seys, S.F.; Hellings, P.W.; Alobid, I.; Backer, V.; Bequignon, E.; von Buchwald, C.; Cavaliere, C.; Coste, A.; Deneyer, L.; Diamant, Z.; et al. Chronic Rhinosinusitis Outcome Registry (CHRINOSOR): Establishment of an International Outcome Registry Driven by mHealth Technology. J. Allergy Clin. Immunol. Pract. 2023, 11, 431–438. [Google Scholar] [CrossRef]
- Loperfido, A.; Cavaliere, C.; Begvarfaj, E.; Ciofalo, A.; D’Erme, G.; De Vincentiis, M.; Greco, A.; Millarelli, S.; Bellocchi, G.; Masieri, S. The Impact of Antibiotics and Steroids on the Nasal Microbiome in Patients with Chronic Rhinosinusitis: A Systematic Review According to PICO Criteria. J. Pers. Med. 2023, 13, 1583. [Google Scholar] [CrossRef] [PubMed]
- Ciofalo, A.; Loperfido, A.; Baroncelli, S.; Masieri, S.; Bellocchi, G.; Caramia, R.; Cascone, F.; Filaferro, L.; Lo Re, F.; Cavaliere, C. Comparison between clinical and cytological findings in chronic rhinosinusitis with nasal polyps treated with Dupilumab. Eur. Arch. Otorhinolaryngol. 2024, 281, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Ahern, S.; Cervin, A. Inflammation and Endotyping in Chronic Rhinosinusitis-A Paradigm Shift. Medicina 2019, 55, 95. [Google Scholar] [CrossRef]
- Kato, A.; Schleimer, R.P. Beyond inflammation: Airway epithelial cells are at the interface of innate and adaptive immunity. Curr. Opin. Immunol. 2007, 19, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Garavelli, S.; De Rosa, V.; de Candia, P. The Multifaceted Interface Between Cytokines and microRNAs: An Ancient Mechanism to Regulate the Good and the Bad of Inflammation. Front. Immunol. 2018, 9, 3012. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 2012, 30, 295–312. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, Y.N.; Liu, Z. MicroRNA in chronic rhinosinusitis and allergic rhinitis. Curr. Allergy Asthma Rep. 2014, 14, 415. [Google Scholar] [CrossRef]
- Li, J.; Qiu, C.Y.; Tao, Y.J.; Cheng, L. Epigenetic modifications in chronic rhinosinusitis with and without nasal polyps. Front. Genet. 2023, 13, 1089647. [Google Scholar] [CrossRef] [PubMed]
- Specjalski, K.; Jassem, E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch. Immunol. Ther. Exp. 2019, 67, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, F.F. Analysis of competing endogenous RNA (ceRNA) crosstalk in eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2022, 12, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, R.; Kim, D.W.; Mo, J.H.; Jin, Y.; Rha, K.S.; Kim, Y.M. Role of Interleukin-10 on Nasal Polypogenesis in Patients with Chronic Rhinosinusitis with Nasal Polyps. PLoS ONE 2016, 11, e0161013. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Feng, Z.; Zhou, L.; Cai, Y.; Jing, Q. Circulating Exosomal microRNA Profiles Associated with Risk of Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J. Inflamm. Res. 2024, 17, 5619–5631. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Zhan, J.; Li, R.; Ye, Y.; Qi, Y.; Wei, X.; Zheng, J. Serum exosomal miR-141-3p and miR-3679-5p levels associated with endotype and postoperative recurrence in chronic rhinosinusitis with nasal polyps. World Allergy Organ. J. 2024, 17, 100938. [Google Scholar] [CrossRef]
- Wheatley, L.M.; Togias, A. Clinical practice. Allergic rhinitis. N. Engl. J. Med. 2015, 372, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Paiva Ferreira, L.K.D.; Paiva Ferreira, L.A.M.; Monteiro, T.M.; Bezerra, G.C.; Bernardo, L.R.; Piuvezam, M.R. Combined allergic rhinitis and asthma syndrome (CARAS). Int. Immunopharmacol. 2019, 74, 105718. [Google Scholar] [CrossRef]
- Shaaban, R.; Zureik, M.; Soussan, D.; Neukirch, C.; Heinrich, J.; Sunyer, J.; Wjst, M.; Cerveri, I.; Pin, I.; Bousquet, J.; et al. Rhinitis and onset of asthma: A longitudinal population-based study. Lancet 2008, 372, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, S.; Gao, Y.; Zhang, W.; Jin, H.; Yang, Y.; Li, J. MicroRNA-126 accelerates IgE-mediated mast cell degranulation associated with the PI3K/Akt signaling pathway by promoting Ca2+ influx. Exp. Ther. Med. 2018, 16, 2763–2769. [Google Scholar] [CrossRef] [PubMed]
- Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18704–18709. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, R.; Liang, X.; Jiang, X.; Bu, Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell. Signal. 2022, 99, 110435. [Google Scholar] [CrossRef]
- Vigorito, E.; Kohlhaas, S.; Lu, D.; Leyland, R. miR-155: An ancient regulator of the immune system. Immunol. Rev. 2013, 253, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Malmhäll, C.; Ramos-Ramírez, P.; Rådinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 2017, 139, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Malmhäll, C.; Alawieh, S.; Lu, Y.; Sjöstrand, M.; Bossios, A.; Eldh, M.; Rådinger, M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014, 133, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sha, J.; Meng, C.; Zhu, D. The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm. 2022, 2022, 4428617. [Google Scholar] [CrossRef]
- Lisan, Q.; Laccourreye, O.; Bonfils, P. Sinonasal inverted papilloma: From diagnosis to treatment. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 337–341. [Google Scholar] [CrossRef]
- Safadi, A.; Schreiber, A.; Fliss, D.M.; Nicolai, P. Juvenile Angiofibroma: Current Management Strategies. J. Neurol. Surg. B Skull Base 2018, 79, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Loperfido, A.; Rizzo, D.; Fionda, B.; Mureddu, L.; Tondo, A.; Tagliaferri, L.; Bellocchi, G.; Delogu, G.; Bussu, F. The Potential Role of the Microbiome in the Pathogenesis of Nasal Tumors: A Comprehensive Review. Medicina 2024, 60, 1808. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Wu, Q.; Zhang, L.; Wang, P. Long noncoding RNA KCNQ1OT1 promotes proliferation, migration, and invasion in maxillary sinus squamous cell carcinoma by regulating miR-204/EphA7 axis. J. Cell. Biochem. 2020, 121, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Alerraqi, E.; Mandour, E.; Faltas, M. Sinonasal Hyalinizing Adenoid Cystic Carcinoma Is Molecularly Different from Its Salivary and Breast Counterparts. J. Mol. Pathol. 2023, 4, 89–98. [Google Scholar] [CrossRef]
- Liao, L.; Tang, Y.; Zhou, Y.; Meng, X.; Li, B.; Zhang, X. MicroRNA-126 (MiR-126): Key roles in related diseases. J. Physiol. Biochem. 2024, 80, 277–286. [Google Scholar] [CrossRef]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Abbas, H.A.; Merza, M.S.; Zabibah, R.S.; Fadhil, A.A. The emerging role of microRNA-126 as a potential therapeutic target in cancer: A comprehensive review. Pathol. Res. Pract. 2023, 248, 154631. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, S.; Monaco, F.; Alessandrini, F.; Tagliabracci, A.; Sabbatini, A.; Bracci, M.; Valentino, M.; Neuzil, J.; Amati, M.; Santarelli, L.; et al. Mechanism of miR-222 and miR-126 regulation and its role in asbestos-induced malignancy. Int. J. Biochem. Cell Biol. 2020, 121, 105700. [Google Scholar] [CrossRef]
- Gambacurta, A.; Tullio, V.; Savini, I.; Mauriello, A.; Catani, M.V.; Gasperi, V. Identification of the EBF1/ETS2/KLF2-miR-126-Gene Feed-Forward Loop in Breast Carcinogenesis and Stemness. Int. J. Mol. Sci. 2025, 26, 328. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Q.; Zhang, X.; Yan, N.; Li, X. Exosomal miR-126 blocks the development of non-small cell lung cancer through the inhibition of ITGA6. Cancer Cell Int. 2020, 20, 574. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Xie, X.; Zhang, D.; Zhou, Y.; Li, B.; Li, F.; Li, F.; Cheng, Y.; Mei, H.; Meng, H.; et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale 2020, 12, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; Gaetani, S.; Alessandrini, F.; Tagliabracci, A.; Bracci, M.; Valentino, M.; Neuzil, J.; Amati, M.; Bovenzi, M.; Tomasetti, M.; et al. Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: Role of miR-126 in cancer-stroma communication. Cancer Lett. 2019, 463, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; De Conti, L.; Vodret, S.; Zanotta, N.; Comar, M.; Manzotti, S.; Rubini, C.; Graciotti, L.; Fulgenzi, G.; Bovenzi, M.; et al. Force-feeding malignant mesothelioma stem-cell like with exosome-delivered miR-126 induces tumour cell killing. Transl. Oncol. 2022, 20, 101400. [Google Scholar] [CrossRef] [PubMed]
Disease | Authors | Year | Country | Sample | Sample Size and Control | miRNA | Expression | |
---|---|---|---|---|---|---|---|---|
Inflammatory Nasal Diseases | Chronic Rhinosinusitis | Silveira MLC et al. [23] | 2021 | Brazil | Tissue | 36 CRSwNP 41 control | miR-205-5p | ↑ |
Song L et al. [24] | 2022 | China | Tissue | 37 CRSwNP 29 CRSsNP | miR-125b | ↑ | ||
Yu J et al. [25] | 2021 | China | Tissue | 3 ECRSwNP 3 nonECRSwNP 3 control | miR-132-3p; miR-145-5p; miR-146a-5p; miR-27b-3p | ↓ | ||
Xia G et al. [26] | 2015 | China | Tissue | 40 CRS 5 control | miR-125b; miR-155; miR-146a | ↑ | ||
miR-92a; miR-26b; miR-181b | ↓ | |||||||
Zhang XH et al. [27] | 2012 | China | Tissue | 43 CRSsNP 46 ECRSwNP 31 nonECRSwNP 50 control | miR-125b | ↑ | ||
Ma ZX et al. [28] | 2015 | China | Blood | 30 CRS 7 control | miR-125b-5P; miR-150-5P; miR-210-3P | ↑ | ||
miR-708b-5P; miR-126-3P | ↓ | |||||||
Gata A et al. [29] | 2023 | Romania | Tissue | 86 CRSwNP 20 control | miR-125b | ↑ | ||
miR-203a-3p | ↓ | |||||||
Du J et al. [30] | 2020 | China | Tissue | 25 ECRSwNP 25 nonECRSwNP 25 CRSsNP 30 control | miR-155 | ↑ | ||
Bu X et al. [31] | 2021 | China | Tissue | 10 ECRSwNP 5 nonECRSwNP 9 control | miR-154; miR-221; miR-223; let-7; miR-34/449 | ↑ | ||
Liu CC et al. [32] | 2018 | China | Tissue | 20 CRSwNP 20 control | miR-124 | ↓ | ||
Korde A et al. [33] | 2020 | USA | Serum/ Tissue | 40 CRS | miR-1 | ↓ | ||
Qing X et al. [34] | 2021 | China | Tissue | 20 CRSwNP 20 control | miR-142-3p | ↑ | ||
Luo XQ et al. [35] | 2017 | China | Blood | 26 CRSwNP 10 control | miR-19-a | ↑ | ||
Luan G et al. [36] | 2022 | China | Tissue | 20 ECRSwNP 12 nonECRSwNP 16 control | miR-21-5p | ↑ | ||
Yang N et al. [37] | 2020 | China | Tissue | 14 CRSsNP 11 CRSwNP 10 control | miR-155-5p | ↑ | ||
Li X et al. [38] | 2019 | China | Tissue | 13 CRSwNP 12 CRSsNP 11 control | miR-21 | ↑ | ||
Allergic Rhinitis | Liu Z et al. [39] | 2024 | China | Blood | 38 CARAS 43 control | miR-4454 | ↑ | |
Panganiban RP et al. [40] | 2016 | USA | Blood | 35 asthma 25 AR 19 control | miR-125b; miR-16; miR-299-5p; miR-126; miR-206; miR-133b | ↑ | ||
Zhu YQ et al. [41] | 2019 | China | Tissue | 26 AR 28 control | miR-155 | ↑ | ||
Liu Q et al. [42] | 2022 | China | Tissue | 6 AR 6 control 6 agomir 6 antagomir | miR-124-3p | ↓ | ||
Long S et al. [43] | 2021 | China | Tissue | 15 AR 15 control | miR-181a-5p | ↓ | ||
Benign Nasal Tumors | Sinonasal Inverted Papilloma | Kakizaki T et al. [44] | 2017 | Japan | Tissue | 5 SNIP 5 SNIP-SNSCC | miR-296-3p | ↑ * |
Teng Y et al. [45] | 2018 | China | Tissue | 32 SNIP 12 control | miR-214-3p | ↓ | ||
Re M et al. [46] | 2021 | Italy | Tissue | 33 SNIP 17 SNIP-SNSCC | miR-449 | ↑ | ||
Juvenile Angiofibroma | Lerner C et al. [47] | 2014 | Germany | Tissue | 13 JA 3 control | miR-125a-5p; miR-218 | ↓ | |
Malignant Nasal Tumors | ITAC | Re M et al. [48] | 2022 | Italy | Tissue | 43 ITAC | miR-205; miR-34c/449a | ↓ |
miR-192 | ↑ | |||||||
Tomasetti M et al. [49] | 2024 | Italy | Tissue | 80 SNC | miR-34c; 449a | ↓ | ||
Tomasetti M et al. [50] | 2018 | Italy | Serum/Tissue | 23 ITAC 15 SNIP 20 NIP | miR-126 | ↓ | ||
SNSCC | Qian Y et al. [51] | 2019 | China | Tissue | 12 SNSCC | miR-143-3p | ↓ | |
Maxillary Sinus SCC | Nohata N et al. [52] | 2011 | Japan | Tissue | 20 MSSCC | miR-874 | ↓ | |
Nohata N et al. [53] | 2011 | Japan | Tissue | 20 MSSCC | miR-1; miR-133a | ↓ | ||
Kinoshita T et al. [54] | 2012 | Japan | Tissue | 20 MSSSCC | miR-375 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loperfido, A.; Cavaliere, C.; Fionda, B.; Masieri, S.; Bellocchi, G.; Re, M.; Tomasetti, M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes 2025, 16, 295. https://doi.org/10.3390/genes16030295
Loperfido A, Cavaliere C, Fionda B, Masieri S, Bellocchi G, Re M, Tomasetti M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes. 2025; 16(3):295. https://doi.org/10.3390/genes16030295
Chicago/Turabian StyleLoperfido, Antonella, Carlo Cavaliere, Bruno Fionda, Simonetta Masieri, Gianluca Bellocchi, Massimo Re, and Marco Tomasetti. 2025. "The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside" Genes 16, no. 3: 295. https://doi.org/10.3390/genes16030295
APA StyleLoperfido, A., Cavaliere, C., Fionda, B., Masieri, S., Bellocchi, G., Re, M., & Tomasetti, M. (2025). The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes, 16(3), 295. https://doi.org/10.3390/genes16030295