The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside
Abstract
:1. Introduction
2. miRNAs in Inflammatory Nasal Diseases
2.1. Chronic Rhinosinusitis (CRS)
2.2. Allergic Rhinitis (AR)
3. miRNAs in Oncological Nasal Diseases
3.1. Benign Tumors
3.2. Malignant Tumors
4. miRNA-Based Therapy: An Approach for Sinonasal Cancer Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
miRNAs | microRNAs |
MVB | multivesicular body |
CRS | chronic rhinosinusitis |
AR | allergic rhinitis |
SNSCC | sinonasal squamous cell carcinoma |
EPOS | European Position Paper on Rhinosinusitis and Nasal Polyps |
HRQoL | health-related quality of life |
CRSwNP | chronic rhinosinusitis with nasal polyps |
CRSsNP | chronic rhinosinusitis without nasal polyps |
IL | interleukin |
TNF-α | tumor necrosis factor α |
EMT | epithelial–mesenchymal transition |
CARAS | combined allergic rhinitis and asthma syndrome |
Treg Th | regulatory T cells T helper cell |
FOXP3 | forkhead box P3 |
IFN-γ | interferon γ |
HPV | human papillomavirus |
SNADC | sinonasal adenocarcinoma |
SNEC | sinonasal neuroendocrine carcinoma |
SNUC | sinonasal undifferentiated carcinoma |
ITAC | intestinal-type sinonasal adenocarcinoma |
NGS | next-generation sequencing |
TFs | transcriptional factors |
KLF2 | Krüppel-like factor 2 |
ETS2 | ETS proto-oncogene 2 |
EBF1 | early B cell factor 1 |
IRS1 | insulin receptor substrate-1 |
VEGF | vascular endothelial growth factor |
FDA | Food and Drug Administration |
NSCLC | non-small cell lung cancer |
References
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Chakraborty, A.; Sarkar, D.; Langthasa, M.; Rahman, M.; Bari, M.; Singha, R.S.; Malakar, A.K.; Chakraborty, S. Interplay between miRNAs and human diseases. J. Cell. Physiol. 2018, 233, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Tüfekci, K.U.; Oner, M.G.; Meuwissen, R.L.; Genç, S. The role of microRNAs in human diseases. Methods Mol. Biol. 2014, 1107, 33–50. [Google Scholar] [PubMed]
- Deveci, G.; Capasso, R.; Ağagündüz, D. Xeno-miRs and Circulating miRNAs as Novel Biomarkers in Certain Diseases. Biologics 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Tahamtan, A.; Samadizadeh, S.; Salimi, V.; Natarelli, L.; Nakstad, B. Editorial: miRNAs and inflammation: From biogenesis to therapeutic option. Front. Immunol. 2023, 14, 1296589. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, W. MicroRNAs: Biomarkers, Diagnostics, and Therapeutics. Methods Mol. Biol. 2017, 1617, 57–67. [Google Scholar] [PubMed]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandão, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Mamalo, A.S.; Alivirdiloo, V.; Sadeghnejad, A.; Hajiabbasi, M.; Gargari, M.K.; Valilo, M. Potential roles of the exosome/microRNA axis in breast cancer. Pathol. Res. Pract. 2023, 251, 154845. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.P.S.; Hall, D.; Chilian, W.M.; Chia, Y.C.; Mohd Zain, S.; Lim, H.M.; Kumar, D.N.; Ching, S.M.; Low, T.Y.; Md Noh, M.F.; et al. Exosomal microRNAs in the development of essential hypertension and its potential as biomarkers. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Gao, Q.; Ping, D.; Wang, Y.; Wu, W.; Lin, X.; Fang, Y.; Zhang, J.; Shao, A. The Role of Exosomal microRNAs and Oxidative Stress in Neurodegenerative Diseases. Oxid. Med. Cell Longev. 2020, 2020, 3232869. [Google Scholar] [CrossRef] [PubMed]
- Huang-Doran, I.; Zhang, C.Y.; Vidal-Puig, A. Extracellular Vesicles: Novel Mediators of Cell Communication in Metabolic Disease. Trends Endocrinol. Metab. 2017, 28, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Brandao, B.B.; Lino, M.; Kahn, C.R. Extracellular miRNAs as mediators of obesity-associated disease. J. Physiol. 2022, 600, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Won, G.Y.; Fukuoka, Y. MicroRNAs associated with exercise and diet: A systematic review. Physiol. Genomics 2015, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Casado-Bedmar, M.; Viennois, E. MicroRNA and Gut Microbiota: Tiny but Mighty-Novel Insights into Their Cross-talk in Inflammatory Bowel Disease Pathogenesis and Therapeutics. J. Crohns Colitis 2022, 16, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Liu, D.Z.; Jickling, G.C.; Sharp, F.R.; Yin, K.J. MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow. Metab. 2018, 38, 1125–1148. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Sang, H.; Wei, S.; Li, Y.; Jin, D.; Zhu, X.; Li, X.; Dang, Y.; Zhang, G. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol. Cancer 2020, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Nguyen, H.T.; Nguyen, X.H.; Do, X.H.; Mai, B.T.; Ngoc Nguyen, H.T.; Trang Than, U.T.; Nguyen, T.H. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023, 9, 22080. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA and ER stress in cancer. Semin. Cancer Biol. 2021, 75, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, Y.; Xu, L.; Jiang, T.; Tang, C.; Yin, C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano 2021, 15, 8267–8282. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.L.C.; Tamashiro, E.; Santos, A.R.D.; Martins, R.B.; Faria, F.M.; Silva, L.E.C.M.; Torrieri, R.; de C Ruy, P.; Silva, W.A., Jr.; Arruda, E.; et al. miRNA-205-5p can be related to T2-polarity in Chronic Rhinosinusitis with Nasal Polyps. Rhinology 2021, 59, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wang, X.; Qu, X.; Lv, C. Transcription Factor Specificity Protein 1 Regulates Inflammation and Fibrin Deposition in Nasal Polyps Via the Regulation of microRNA-125b and the Wnt/β-catenin Signaling Pathway. Inflammation 2022, 45, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kang, X.; Xiong, Y.; Luo, Q.; Dai, D.; Ye, J. Gene Expression Profiles of Circular RNAs and MicroRNAs in Chronic Rhinosinusitis With Nasal Polyps. Front. Mol. Biosci. 2021, 8, 643504. [Google Scholar] [CrossRef]
- Xia, G.; Bao, L.; Gao, W.; Liu, S.; Ji, K.; Li, J. Differentially Expressed miRNA in Inflammatory Mucosa of Chronic Rhinosinusitis. J. Nanosci. Nanotechnol. 2015, 15, 2132–2139. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, Y.N.; Li, H.B.; Hu, C.Y.; Wang, N.; Cao, P.P.; Liao, B.; Lu, X.; Cui, Y.H.; Liu, Z. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am. J. Respir. Crit. Care Med. 2012, 185, 140–151. [Google Scholar] [CrossRef]
- Ma, Z.X.; Tan, X.; Shen, Y.; Ke, X.; Yang, Y.C.; He, X.B.; Wang, Z.H.; Dai, Y.B.; Hong, S.L.; Hu, G.H. MicroRNA expression profile of mature dendritic cell in chronic rhinosinusitis. Inflamm. Res. 2015, 64, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Gata, A.; Neagoe, I.B.; Leucuta, D.C.; Budisan, L.; Raduly, L.; Trombitas, V.E.; Albu, S. MicroRNAs: Potential Biomarkers of Disease Severity in Chronic Rhinosinusitis with Nasal Polyps. Medicina 2023, 59, 550. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Lv, H.; Dou, X.; Cao, Z. Nuclear Factor κB/MicroRNA-155 Upregulates the Expression Pattern of Cytokines in Regulating the Relapse of Chronic Sinusitis with Nasal Polyps and the Underlying Mechanism of Glucocorticoid. Med. Sci. Monit. 2020, 26, 923618. [Google Scholar] [CrossRef]
- Bu, X.; Wang, M.; Luan, G.; Wang, Y.; Wang, C.; Zhang, L. Integrated miRNA and mRNA expression profiling reveals dysregulated miRNA-mRNA regulatory networks in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2021, 11, 1207–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Xia, M.; Zhang, Y.J.; Jin, P.; Zhao, L.; Zhang, J.; Li, T.; Zhou, X.M.; Tu, Y.Y.; Kong, F.; et al. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem. Biophys. Res. Commun. 2018, 500, 145–151. [Google Scholar] [CrossRef]
- Korde, A.; Ahangari, F.; Haslip, M.; Zhang, X.; Liu, Q.; Cohn, L.; Gomez, J.L.; Chupp, G.; Pober, J.S.; Gonzalez, A.; et al. An endothelial microRNA-1-regulated network controls eosinophil trafficking in asthma and chronic rhinosinusitis. J. Allergy Clin. Immunol. 2020, 145, 550–562. [Google Scholar] [CrossRef]
- Qing, X.; Zhang, Y.; Peng, Y.; He, G.; Liu, A.; Liu, H. Mir-142-3p Regulates Inflammatory Response by Contributing to Increased TNF-α in Chronic Rhinosinusitis With Nasal Polyposis. Ear Nose Throat J. 2021, 100, 50–56. [Google Scholar] [CrossRef]
- Luo, X.Q.; Shao, J.B.; Xie, R.D.; Zeng, L.; Li, X.X.; Qiu, S.Q.; Geng, X.R.; Yang, L.T.; Li, L.J.; Liu, D.B.; et al. Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis. Oncotarget 2017, 8, 48915–48921. [Google Scholar] [CrossRef] [PubMed]
- Luan, G.; Wang, M.; Yuan, J.; Bu, X.; Wang, Y.; Ying, S.; Wang, C.; Zhang, L. MicroRNA-21-5p promotes mucosal type 2 inflammation via regulating GLP1R/IL-33 signaling in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2022, 150, 1460–1475. [Google Scholar] [CrossRef]
- Yang, N.; Cheng, H.; Mo, Q.; Zhou, X.; Xie, M. miR 155 5p downregulation inhibits epithelial to mesenchymal transition by targeting SIRT1 in human nasal epithelial cells. Mol. Med. Rep. 2020, 22, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhu, G.; Yuan, W.; Xiao, Z.A. TGF-β1 Induces Epithelial-Mesenchymal Transition of Chronic Sinusitis with Nasal Polyps through MicroRNA-21. Int. Arch. Allergy Immunol. 2019, 179, 304–319. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, C.; Shi, Y.; Wang, Z.; Zhou, L.; Zhang, Q.; Mao, Z. MiR-4454 in Combined Allergic Rhinitis and Asthma Syndrome (CARAS): Clinical significance and mechanistic insights into airway inflammation. Cell Mol. Biol. 2024, 70, 225–232. [Google Scholar]
- Panganiban, R.P.; Wang, Y.; Howrylak, J.; Chinchilli, V.M.; Craig, T.J.; August, A.; Ishmael, F.T. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J. Allergy Clin. Immunol. 2016, 137, 1423–1432. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Liao, B.; Liu, Y.H.; Wang, Z.; Zhu, X.H.; Chen, X.B.; Wang, M.Q. MicroRNA-155 plays critical effects on Th2 factors expression and allergic inflammatory response in type-2 innate lymphoid cells in allergic rhinitis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4097–4109. [Google Scholar] [PubMed]
- Liu, Q.; Shen, Y.; Xiao, Y.; Xiang, H.; Chu, L.; Wang, T.; Liu, H.; Tan, G. Increased miR-124-3p alleviates type 2 inflammatory response in allergic rhinitis via IL-4Rα. Inflamm. Res. 2022, 71, 1271–1282. [Google Scholar] [CrossRef]
- Long, S.; Zhang, H. MIR-181A-5P Attenuates Ovalbumin-Induced Allergic Inflammation in Nasal Epithelial Cells by Targeting IL-33/P38 MAPK Pathway. Clin. Investig. Med. 2021, 44, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kakizaki, T.; Hatakeyama, H.; Nakamaru, Y.; Takagi, D.; Mizumachi, T.; Sakashita, T.; Kano, S.; Homma, A.; Fukuda, S. Role of microRNA-296-3p in the malignant transformation of sinonasal inverted papilloma. Oncol. Lett. 2017, 14, 987–992. [Google Scholar] [CrossRef]
- Teng, Y.; Li, Y.; Lin, Z.; Gao, Y.; Cao, X.; Lou, X.; Lin, F.; Li, Y. Analysis of miRNA expression profiling identifies miR-214-3p as a novel biomarker in sinonasal inverted papilloma. Epigenomics 2018, 10, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Tomasetti, M.; Monaco, F.; Amati, M.; Rubini, C.; Foschini, M.P.; Sollini, G.; Gioacchini, F.M.; Pasquini, E.; Santarelli, L. NGS-based miRNome identifies miR-449 cluster as marker of malignant transformation of sinonasal inverted papilloma. Oral. Oncol. 2021, 122, 105554. [Google Scholar] [CrossRef] [PubMed]
- Lerner, C.; Wemmert, S.; Schick, B. Preliminary analysis of different microRNA expression levels in juvenile angiofibromas. Biomed. Rep. 2014, 2, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Re, M.; Tomasetti, M.; Monaco, F.; Amati, M.; Rubini, C.; Sollini, G.; Bajraktari, A.; Gioacchini, F.M.; Santarelli, L.; Pasquini, E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2022, 44, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, M.; Monaco, F.; Rubini, C.; Rossato, M.; De Quattro, C.; Beltrami, C.; Sollini, G.; Pasquini, E.; Amati, M.; Goteri, G.; et al. AGO2-RIP-Seq reveals miR-34/miR-449 cluster targetome in sinonasal cancers. PLoS ONE 2024, 19, e0295997. [Google Scholar] [CrossRef]
- Tomasetti, M.; Re, M.; Monaco, F.; Gaetani, S.; Rubini, C.; Bertini, A.; Pasquini, E.; Bersaglieri, C.; Bracci, M.; Staffolani, S.; et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: Exosomal transfer of MiR-126 promotes anti-tumour responses. BMC Cancer 2018, 18, 896. [Google Scholar] [CrossRef]
- Qian, Y.; Teng, Y.; Li, Y.; Lin, X.; Guan, M.; Li, Y.; Cao, X.; Gao, Y. MiR-143-3p suppresses the progression of nasal squamous cell carcinoma by targeting Bcl-2 and IGF1R. Biochem. Biophys. Res. Commun. 2019, 518, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Nohata, N.; Hanazawa, T.; Kikkawa, N.; Sakurai, D.; Fujimura, L.; Chiyomaru, T.; Kawakami, K.; Yoshino, H.; Enokida, H.; Nakagawa, M.; et al. Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma. Br. J. Cancer 2011, 105, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Nohata, N.; Hanazawa, T.; Kikkawa, N.; Sakurai, D.; Sasaki, K.; Chiyomaru, T.; Kawakami, K.; Yoshino, H.; Enokida, H.; Nakagawa, M.; et al. Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 2011, 39, 1099–1107. [Google Scholar]
- Kinoshita, T.; Nohata, N.; Yoshino, H.; Hanazawa, T.; Kikkawa, N.; Fujimura, L.; Chiyomaru, T.; Kawakami, K.; Enokida, H.; Nakagawa, M.; et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 2012, 40, 185–193. [Google Scholar]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef] [PubMed]
- Seys, S.F.; Hellings, P.W.; Alobid, I.; Backer, V.; Bequignon, E.; von Buchwald, C.; Cavaliere, C.; Coste, A.; Deneyer, L.; Diamant, Z.; et al. Chronic Rhinosinusitis Outcome Registry (CHRINOSOR): Establishment of an International Outcome Registry Driven by mHealth Technology. J. Allergy Clin. Immunol. Pract. 2023, 11, 431–438. [Google Scholar] [CrossRef]
- Loperfido, A.; Cavaliere, C.; Begvarfaj, E.; Ciofalo, A.; D’Erme, G.; De Vincentiis, M.; Greco, A.; Millarelli, S.; Bellocchi, G.; Masieri, S. The Impact of Antibiotics and Steroids on the Nasal Microbiome in Patients with Chronic Rhinosinusitis: A Systematic Review According to PICO Criteria. J. Pers. Med. 2023, 13, 1583. [Google Scholar] [CrossRef] [PubMed]
- Ciofalo, A.; Loperfido, A.; Baroncelli, S.; Masieri, S.; Bellocchi, G.; Caramia, R.; Cascone, F.; Filaferro, L.; Lo Re, F.; Cavaliere, C. Comparison between clinical and cytological findings in chronic rhinosinusitis with nasal polyps treated with Dupilumab. Eur. Arch. Otorhinolaryngol. 2024, 281, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Ahern, S.; Cervin, A. Inflammation and Endotyping in Chronic Rhinosinusitis-A Paradigm Shift. Medicina 2019, 55, 95. [Google Scholar] [CrossRef]
- Kato, A.; Schleimer, R.P. Beyond inflammation: Airway epithelial cells are at the interface of innate and adaptive immunity. Curr. Opin. Immunol. 2007, 19, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Garavelli, S.; De Rosa, V.; de Candia, P. The Multifaceted Interface Between Cytokines and microRNAs: An Ancient Mechanism to Regulate the Good and the Bad of Inflammation. Front. Immunol. 2018, 9, 3012. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 2012, 30, 295–312. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, Y.N.; Liu, Z. MicroRNA in chronic rhinosinusitis and allergic rhinitis. Curr. Allergy Asthma Rep. 2014, 14, 415. [Google Scholar] [CrossRef]
- Li, J.; Qiu, C.Y.; Tao, Y.J.; Cheng, L. Epigenetic modifications in chronic rhinosinusitis with and without nasal polyps. Front. Genet. 2023, 13, 1089647. [Google Scholar] [CrossRef] [PubMed]
- Specjalski, K.; Jassem, E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch. Immunol. Ther. Exp. 2019, 67, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, F.F. Analysis of competing endogenous RNA (ceRNA) crosstalk in eosinophilic chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 2022, 12, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, R.; Kim, D.W.; Mo, J.H.; Jin, Y.; Rha, K.S.; Kim, Y.M. Role of Interleukin-10 on Nasal Polypogenesis in Patients with Chronic Rhinosinusitis with Nasal Polyps. PLoS ONE 2016, 11, e0161013. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Feng, Z.; Zhou, L.; Cai, Y.; Jing, Q. Circulating Exosomal microRNA Profiles Associated with Risk of Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J. Inflamm. Res. 2024, 17, 5619–5631. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Zhan, J.; Li, R.; Ye, Y.; Qi, Y.; Wei, X.; Zheng, J. Serum exosomal miR-141-3p and miR-3679-5p levels associated with endotype and postoperative recurrence in chronic rhinosinusitis with nasal polyps. World Allergy Organ. J. 2024, 17, 100938. [Google Scholar] [CrossRef]
- Wheatley, L.M.; Togias, A. Clinical practice. Allergic rhinitis. N. Engl. J. Med. 2015, 372, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Paiva Ferreira, L.K.D.; Paiva Ferreira, L.A.M.; Monteiro, T.M.; Bezerra, G.C.; Bernardo, L.R.; Piuvezam, M.R. Combined allergic rhinitis and asthma syndrome (CARAS). Int. Immunopharmacol. 2019, 74, 105718. [Google Scholar] [CrossRef]
- Shaaban, R.; Zureik, M.; Soussan, D.; Neukirch, C.; Heinrich, J.; Sunyer, J.; Wjst, M.; Cerveri, I.; Pin, I.; Bousquet, J.; et al. Rhinitis and onset of asthma: A longitudinal population-based study. Lancet 2008, 372, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, S.; Gao, Y.; Zhang, W.; Jin, H.; Yang, Y.; Li, J. MicroRNA-126 accelerates IgE-mediated mast cell degranulation associated with the PI3K/Akt signaling pathway by promoting Ca2+ influx. Exp. Ther. Med. 2018, 16, 2763–2769. [Google Scholar] [CrossRef] [PubMed]
- Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18704–18709. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, R.; Liang, X.; Jiang, X.; Bu, Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell. Signal. 2022, 99, 110435. [Google Scholar] [CrossRef]
- Vigorito, E.; Kohlhaas, S.; Lu, D.; Leyland, R. miR-155: An ancient regulator of the immune system. Immunol. Rev. 2013, 253, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Malmhäll, C.; Ramos-Ramírez, P.; Rådinger, M. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J. Allergy Clin. Immunol. 2017, 139, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Malmhäll, C.; Alawieh, S.; Lu, Y.; Sjöstrand, M.; Bossios, A.; Eldh, M.; Rådinger, M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014, 133, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sha, J.; Meng, C.; Zhu, D. The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm. 2022, 2022, 4428617. [Google Scholar] [CrossRef]
- Lisan, Q.; Laccourreye, O.; Bonfils, P. Sinonasal inverted papilloma: From diagnosis to treatment. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 337–341. [Google Scholar] [CrossRef]
- Safadi, A.; Schreiber, A.; Fliss, D.M.; Nicolai, P. Juvenile Angiofibroma: Current Management Strategies. J. Neurol. Surg. B Skull Base 2018, 79, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Loperfido, A.; Rizzo, D.; Fionda, B.; Mureddu, L.; Tondo, A.; Tagliaferri, L.; Bellocchi, G.; Delogu, G.; Bussu, F. The Potential Role of the Microbiome in the Pathogenesis of Nasal Tumors: A Comprehensive Review. Medicina 2024, 60, 1808. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.; Wu, Q.; Zhang, L.; Wang, P. Long noncoding RNA KCNQ1OT1 promotes proliferation, migration, and invasion in maxillary sinus squamous cell carcinoma by regulating miR-204/EphA7 axis. J. Cell. Biochem. 2020, 121, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Alerraqi, E.; Mandour, E.; Faltas, M. Sinonasal Hyalinizing Adenoid Cystic Carcinoma Is Molecularly Different from Its Salivary and Breast Counterparts. J. Mol. Pathol. 2023, 4, 89–98. [Google Scholar] [CrossRef]
- Liao, L.; Tang, Y.; Zhou, Y.; Meng, X.; Li, B.; Zhang, X. MicroRNA-126 (MiR-126): Key roles in related diseases. J. Physiol. Biochem. 2024, 80, 277–286. [Google Scholar] [CrossRef]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Abbas, H.A.; Merza, M.S.; Zabibah, R.S.; Fadhil, A.A. The emerging role of microRNA-126 as a potential therapeutic target in cancer: A comprehensive review. Pathol. Res. Pract. 2023, 248, 154631. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, S.; Monaco, F.; Alessandrini, F.; Tagliabracci, A.; Sabbatini, A.; Bracci, M.; Valentino, M.; Neuzil, J.; Amati, M.; Santarelli, L.; et al. Mechanism of miR-222 and miR-126 regulation and its role in asbestos-induced malignancy. Int. J. Biochem. Cell Biol. 2020, 121, 105700. [Google Scholar] [CrossRef]
- Gambacurta, A.; Tullio, V.; Savini, I.; Mauriello, A.; Catani, M.V.; Gasperi, V. Identification of the EBF1/ETS2/KLF2-miR-126-Gene Feed-Forward Loop in Breast Carcinogenesis and Stemness. Int. J. Mol. Sci. 2025, 26, 328. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Q.; Zhang, X.; Yan, N.; Li, X. Exosomal miR-126 blocks the development of non-small cell lung cancer through the inhibition of ITGA6. Cancer Cell Int. 2020, 20, 574. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Xie, X.; Zhang, D.; Zhou, Y.; Li, B.; Li, F.; Li, F.; Cheng, Y.; Mei, H.; Meng, H.; et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale 2020, 12, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; Gaetani, S.; Alessandrini, F.; Tagliabracci, A.; Bracci, M.; Valentino, M.; Neuzil, J.; Amati, M.; Bovenzi, M.; Tomasetti, M.; et al. Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: Role of miR-126 in cancer-stroma communication. Cancer Lett. 2019, 463, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Monaco, F.; De Conti, L.; Vodret, S.; Zanotta, N.; Comar, M.; Manzotti, S.; Rubini, C.; Graciotti, L.; Fulgenzi, G.; Bovenzi, M.; et al. Force-feeding malignant mesothelioma stem-cell like with exosome-delivered miR-126 induces tumour cell killing. Transl. Oncol. 2022, 20, 101400. [Google Scholar] [CrossRef] [PubMed]
Disease | Authors | Year | Country | Sample | Sample Size and Control | miRNA | Expression | |
---|---|---|---|---|---|---|---|---|
Inflammatory Nasal Diseases | Chronic Rhinosinusitis | Silveira MLC et al. [23] | 2021 | Brazil | Tissue | 36 CRSwNP 41 control | miR-205-5p | ↑ |
Song L et al. [24] | 2022 | China | Tissue | 37 CRSwNP 29 CRSsNP | miR-125b | ↑ | ||
Yu J et al. [25] | 2021 | China | Tissue | 3 ECRSwNP 3 nonECRSwNP 3 control | miR-132-3p; miR-145-5p; miR-146a-5p; miR-27b-3p | ↓ | ||
Xia G et al. [26] | 2015 | China | Tissue | 40 CRS 5 control | miR-125b; miR-155; miR-146a | ↑ | ||
miR-92a; miR-26b; miR-181b | ↓ | |||||||
Zhang XH et al. [27] | 2012 | China | Tissue | 43 CRSsNP 46 ECRSwNP 31 nonECRSwNP 50 control | miR-125b | ↑ | ||
Ma ZX et al. [28] | 2015 | China | Blood | 30 CRS 7 control | miR-125b-5P; miR-150-5P; miR-210-3P | ↑ | ||
miR-708b-5P; miR-126-3P | ↓ | |||||||
Gata A et al. [29] | 2023 | Romania | Tissue | 86 CRSwNP 20 control | miR-125b | ↑ | ||
miR-203a-3p | ↓ | |||||||
Du J et al. [30] | 2020 | China | Tissue | 25 ECRSwNP 25 nonECRSwNP 25 CRSsNP 30 control | miR-155 | ↑ | ||
Bu X et al. [31] | 2021 | China | Tissue | 10 ECRSwNP 5 nonECRSwNP 9 control | miR-154; miR-221; miR-223; let-7; miR-34/449 | ↑ | ||
Liu CC et al. [32] | 2018 | China | Tissue | 20 CRSwNP 20 control | miR-124 | ↓ | ||
Korde A et al. [33] | 2020 | USA | Serum/ Tissue | 40 CRS | miR-1 | ↓ | ||
Qing X et al. [34] | 2021 | China | Tissue | 20 CRSwNP 20 control | miR-142-3p | ↑ | ||
Luo XQ et al. [35] | 2017 | China | Blood | 26 CRSwNP 10 control | miR-19-a | ↑ | ||
Luan G et al. [36] | 2022 | China | Tissue | 20 ECRSwNP 12 nonECRSwNP 16 control | miR-21-5p | ↑ | ||
Yang N et al. [37] | 2020 | China | Tissue | 14 CRSsNP 11 CRSwNP 10 control | miR-155-5p | ↑ | ||
Li X et al. [38] | 2019 | China | Tissue | 13 CRSwNP 12 CRSsNP 11 control | miR-21 | ↑ | ||
Allergic Rhinitis | Liu Z et al. [39] | 2024 | China | Blood | 38 CARAS 43 control | miR-4454 | ↑ | |
Panganiban RP et al. [40] | 2016 | USA | Blood | 35 asthma 25 AR 19 control | miR-125b; miR-16; miR-299-5p; miR-126; miR-206; miR-133b | ↑ | ||
Zhu YQ et al. [41] | 2019 | China | Tissue | 26 AR 28 control | miR-155 | ↑ | ||
Liu Q et al. [42] | 2022 | China | Tissue | 6 AR 6 control 6 agomir 6 antagomir | miR-124-3p | ↓ | ||
Long S et al. [43] | 2021 | China | Tissue | 15 AR 15 control | miR-181a-5p | ↓ | ||
Benign Nasal Tumors | Sinonasal Inverted Papilloma | Kakizaki T et al. [44] | 2017 | Japan | Tissue | 5 SNIP 5 SNIP-SNSCC | miR-296-3p | ↑ * |
Teng Y et al. [45] | 2018 | China | Tissue | 32 SNIP 12 control | miR-214-3p | ↓ | ||
Re M et al. [46] | 2021 | Italy | Tissue | 33 SNIP 17 SNIP-SNSCC | miR-449 | ↑ | ||
Juvenile Angiofibroma | Lerner C et al. [47] | 2014 | Germany | Tissue | 13 JA 3 control | miR-125a-5p; miR-218 | ↓ | |
Malignant Nasal Tumors | ITAC | Re M et al. [48] | 2022 | Italy | Tissue | 43 ITAC | miR-205; miR-34c/449a | ↓ |
miR-192 | ↑ | |||||||
Tomasetti M et al. [49] | 2024 | Italy | Tissue | 80 SNC | miR-34c; 449a | ↓ | ||
Tomasetti M et al. [50] | 2018 | Italy | Serum/Tissue | 23 ITAC 15 SNIP 20 NIP | miR-126 | ↓ | ||
SNSCC | Qian Y et al. [51] | 2019 | China | Tissue | 12 SNSCC | miR-143-3p | ↓ | |
Maxillary Sinus SCC | Nohata N et al. [52] | 2011 | Japan | Tissue | 20 MSSCC | miR-874 | ↓ | |
Nohata N et al. [53] | 2011 | Japan | Tissue | 20 MSSCC | miR-1; miR-133a | ↓ | ||
Kinoshita T et al. [54] | 2012 | Japan | Tissue | 20 MSSSCC | miR-375 | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loperfido, A.; Cavaliere, C.; Fionda, B.; Masieri, S.; Bellocchi, G.; Re, M.; Tomasetti, M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes 2025, 16, 295. https://doi.org/10.3390/genes16030295
Loperfido A, Cavaliere C, Fionda B, Masieri S, Bellocchi G, Re M, Tomasetti M. The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes. 2025; 16(3):295. https://doi.org/10.3390/genes16030295
Chicago/Turabian StyleLoperfido, Antonella, Carlo Cavaliere, Bruno Fionda, Simonetta Masieri, Gianluca Bellocchi, Massimo Re, and Marco Tomasetti. 2025. "The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside" Genes 16, no. 3: 295. https://doi.org/10.3390/genes16030295
APA StyleLoperfido, A., Cavaliere, C., Fionda, B., Masieri, S., Bellocchi, G., Re, M., & Tomasetti, M. (2025). The Emerging Role of MicroRNAs in Nasal Inflammatory Diseases and Tumors: From Bench to Bedside. Genes, 16(3), 295. https://doi.org/10.3390/genes16030295