Prostaglandin Pathway Polymorphisms and HsPDA Treatment Outcomes in Preterm Infants below 32 Weeks: Pilot Study
Abstract
1. Introduction
2. Methods
2.1. Definitions
2.2. Diagnostic Criteria for PDA
2.3. Study Design and Data Collection
2.4. Ethics
2.5. Studied SNPs
2.6. Testing Methodology
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reese, J.; Veldman, A.; Shah, L.; Vucovich, M.; Cotton, R.B. Inadvertent relaxation of the ductus arteriosus by pharmacologic agents that are commonly used in the neonatal period. Semin. Perinatol. 2010, 34, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.; Meraji, S.M.; Houshyar, R.; Radhakrishnan, J.; Mani, A.; Ahangar, M.; Rezaie, T.M.; Taghavinejad, M.-A.; Broumand, B.; Zhao, H. Finding genetic contributions to sporadic disease: A recessive locus at 12q24 commonly contributes to patent ductus arteriosus. Proc. Natl. Acad. Sci. USA 2002, 99, 15054–15059. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Zhou, G.; Bizzarro, M.J.; Buhimschi, C.; Hussain, N.; Gruen, J.R.; Zhang, H. Genetic contribution to patent ductus arteriosus in the premature newborn. Pediatrics 2009, 123, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Gittenberger-de Groot, A.C.; Strengers, J.L.; Mentink, M.; Poelmann, R.E.; Patterson, D.F. Histologic studies on normal and persistent ductus arteriosus in the dog. J. Am. Coll. Cardiol. 1985, 6, 394–404. [Google Scholar] [CrossRef]
- Bokenkamp, R.; Gittenberger-De Groot, A.C.; Van Munsteren, C.J.; Grauss, R.W.; Ottenkamp, J.; Deruiter, M.C. Persistent ductus arteriosus in the Brown Norway inbred rat strain. Pediatr. Res. 2006, 60, 407–412. [Google Scholar] [CrossRef]
- Hundscheid, T.; van den Broek, M.; van der Lee, R.; de Boode, W.P. Understanding the pathobiology in patent ductus arteriosus in prematurity—Beyond prostaglandins and oxygen. Pediatr. Res. 2019, 86, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Coceani, F.; Olley, P.M.; Bodach, E. Lamb ductus arteriosus: Effect of prostaglandin synthesis inhibitors on the muscle tone and the response to prostaglandin E2. Prostaglandins 1975, 9, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Friedman, W.F.; Hirschklau, M.J.; Printz, M.P.; Pitlick, P.T.; Kirkpatrick, S.E. Pharmacologic closure of patent ductus arteriosus in the premature infant. N. Engl. J. Med. 1976, 295, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Heymann, M.A.; Rudolph, A.M.; Silverman, N.H. Closure of the ductus arteriosus in premature infants by inhibition of prostaglandin synthesis. N. Engl. J. Med. 1976, 295, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Walia, R.; Shah, S.S. Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst. Rev. 2015, 2, CD003481. [Google Scholar] [CrossRef] [PubMed]
- Valerio, E.; Valente, M.R.; Salvadori, S.; Frigo, A.C.; Baraldi, E.; Lago, P. Intravenous paracetamol for PDA closure in the preterm: A single-center experience. Eur. J. Pediatr. 2016, 175, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Yurttutan, S.; Oncel, M.Y.; Arayıcı, S.; Uras, N.; Altug, N.; Erdeve, O.; Dilmen, U. A different first-choice drug in the medical management of patent ductus arteriosus: Oral paracetamol. J. Matern.–Fetal Neonatal Med. 2013, 26, 825–827. [Google Scholar] [CrossRef]
- Bagheri, M.M.; Niknafs, P.; Sabsevari, F.; Torabi, M.H.; Bijari, B.B.; Noroozi, E.; Mossavi, H. Comparison of oral acetaminophen versus ibuprofen in premature infants with patent ductus arteriosus. Iran. J. Pediatr. 2016, 26, e3975. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Garcia-Martin, E.; Blanco, G.; Gamito, F.J.; Ladero, J.M.; Agundez, J.A. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br. J. Clin. Pharmacol. 2005, 59, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, E.; Martinez, C.; Tabares, B.; Frias, J.; Agundez, J.A. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther. 2004, 76, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Kirchheiner, J.; Meineke, I.; Freytag, G.; Meisel, C.; Roots, I.; Brockmoller, J. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin. Pharmacol. Ther. 2002, 72, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Durrmeyer, X.; Hovhannisyan, S.; Medard, Y.; Jacqz-Aigrain, E.; Decobert, F.; Barre, J.; Alberti, C.; Aujard, Y.; Danan, C.; Baud, O. Are cytochrome P450 CYP2C8 and CYP2C9 polymorphisms associated with ibuprofen response in very preterm infants? PLoS ONE 2010, 5, e12329. [Google Scholar] [CrossRef] [PubMed]
- Zuppa, A.F.; Hammer, G.B.; Barrett, J.S.; Kenney, B.F.; Kassir, N.; Mouksassi, S.; Royal, M.A. Safety and population pharmacokinetic analysis of intravenous acetaminophen in neonates, infants, children, an adolescents with pain or fever. J. Pediatr. Pharmacol. Ther. 2011, 16, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Roberts, R.J.; Fischer, L.J. Acetaminophen elimination kinetics in neonates, children, and adults. Clin. Pharmacol. Ther. 1976, 19, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Liu, M.-Y.; Kurogi, K.; Sakakibara, Y.; Saeki, Y.; Suiko, M.; Liu, M.-C. Sulphation of acetaminophen by the human cytosolic sulfotransferases: A systematic analysis. J. Biochem. 2015, 158, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Court, M.H.; Freytsis, M.; Wang, X.; Peter, I.; Guillemette, C.; Hazarika, S.; Duan, S.X.; Greenblatt, D.J.; Lee, W.M.; Acute Liver Failure Study Group. The UDP-glucuronosyltransferase (UGT) 1A polymorphism c.2042C → G (rs8330) is associated with increased human liver acetaminophen glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of unintentional acetaminophen-induced acute liver failure. J. Pharmacol. Exp. Ther. 2013, 345, 297–307. [Google Scholar] [PubMed]
- Nagar, S.; Walther, S.; Blanchard, R.L. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol. Pharmacol. 2006, 69, 2084–2092. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Sun, L.C.; Wang, Y.Q.; Liu, T.T.; Cai, J.R.; Liu, H.; Ren, Z.; Yi, Z. The associations of candidate gene polymorphisms with aspirin resistance in patients with ischemic disease: A meta-analysis. Hum. Genom. 2024, 18, 135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, P.B.; Qian, R.; Hong, C.; Guo, Y.T.; Yu, Y.J.; Zhang, G.; Tan, S.Y. Association between PTGER4 polymorphisms and inflammatory bowel disease risk in Caucasian: A meta-analysis. Medicine 2020, 99, e19756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chan, M.V.; Hayman, M.A.; Sivapalaratnam, S.; Crescente, M.; Allan, H.E.; Edin, M.L.; Zeldin, D.C.; Milne, G.L.; Stephens, J.; Greene, D.; et al. Identification of a homozygous recessive variant in PTGS1 resulting in a congenital aspirin-like defect in platelet function. Haematologica 2021, 106, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Boomgaarden, I.; Bosy-Westphal, A.; Müller, M.J.; Döring, F. Influence of a type 2 diabetes associated prostaglandin E synthase 2 polymorphism on blood prostaglandin E2 levels. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Libioulle, C.; Louis, E.; Hansoul, S.; Sandor, C.; Farnir, F.; Franchimont, D.; Vermeire, S.; Dewit, O.; de Vos, M.; Dixon, A.; et al. Novel Crohn Disease Locus Identified by Genome-Wide Association Maps to a Gene Desert on 5p13.1 and Modulates Expression of PTGER4. PLoS Genet. 2007, 3, e58. [Google Scholar] [CrossRef]
- Clyman, R.I.; Hills, N.K.; Dagle, J.M.; Murray, J.C.; Kelsey, K. Interactions between PDA-associated polymorphisms and genetic ancestry alter ductus arteriosus gene expression. Pediatr. Res. 2022, 91, 903–911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartiala, J.; Gilliam, E.; Vikman, S.; Campos, H.; Allayee, H. Association of PLA2G4A with myocardial infarction is modulated by dietary PUFAs. Am. J. Clin. Nutr. 2012, 95, 959–965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jurado-Escobar, R.; Doña, I.; Triano-Cornejo, J.; Perkins, J.R.; Pérez-Sánchez, N.; Testera-Montes, A.; Labella, M.; Bartra, J.; Laguna, J.J.; Estravís, M.; et al. Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal AntiInflammatory Drug–Induced Acute Urticaria/Angioedema. Front. Pharmacol. 2021, 12, 667824. [Google Scholar] [CrossRef]
- Taylor, D.L.; Jackson, A.U.; Narisu, N.; Hemani, G.; Erdos, M.R.; Chines, P.S.; Swift, A.; Idol, J.; Didion, J.P.; Welch, R.P.; et al. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc. Natl. Acad. Sci. USA 2019, 116, 10883–10888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olsen, R.S.; Andersson, R.E.; Zar, N.; Löfgren, S.; Wågsäter, D.; Matussek, A.; Dimberg, J. Prognostic significance of PLA2G4C gene polymorphism in patients with stage II colorectal cancer. Acta Oncol. 2016, 55, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.L.; Jagirdar, K.; Lee, K.J.; McWhirter, S.R.; McMeniman, E.K.; De’Ambrosis, B.; Pflugfelder, A.; Rayner, J.E.; Whiteman, D.C.; Brown, M.A.; et al. Genes Determining Nevus Count and Dermoscopic Appearance in Australian Melanoma Cases and Controls. J. Investig. Dermatol. 2020, 140, 498–501.e17. [Google Scholar] [CrossRef]
- Millwood, I.Y.; Bennett, D.A.; Walters, R.G.; Clarke, R.; Waterworth, D.; Johnson, T.; Chen, Y.; Yang, L.; Guo, Y.; Bian, Z.; et al. Lipoprotein-Associated Phospholipase A2 Loss-of-Function Variant and Risk of Vascular Diseases in 90,000 Chinese Adults. J. Am. Coll. Cardiol. 2016, 67, 230–231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, R.; Song, Q.; Liu, H.; Bai, H.; Zhang, Y.; Liu, Q.; Guan, L.; Fan, P. Effect of the R92H and A379V genotypes of platelet-activating factor acetylhydrolase on its enzyme activity, oxidative stress and metabolic profile in Chinese women with polycystic ovary syndrome. Lipids Health Dis. 2017, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Cotton, R.B.; Haywood, J.L.; FitzGerald, G.A. Symptomatic patent ductus arteriosus following prophylactic indomethacin. A Clin. Biochem. Apprais. Biol. Neonate. 1991, 60, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Chorne, N.; Jegatheesan, P.; Lin, E.; Shi, R.; Clyman, R.I. Risk factors for persistent ductus arteriosus patency during indomethacin treatment. J. Pediatr. 2007, 151, 629–634. [Google Scholar] [CrossRef] [PubMed]
| Parameter | Criterion | 
|---|---|
| Ductal diameter (maximum internal diameter from the pulmonary artery side) | ⋝1.5 mm in infants < 27 weeks’ gestation ⋝2.5 1.5 mm in infants > 27 weeks’ gestation | 
| PDA/LPA (Ratio of ductal diameter to left pulmonary artery diameter) | Small < 0.5 Moderate 0.5–1.0 Large > 1.0 | 
| La/ao (Left atrium to aortic root diameter ratio) | >1.8 | 
| Left ventricular enlargement | LV end-diastolic diameter (LVDd) according to Z-score | 
| Descending aortic flow distal to the ductal insertion | Absence of diastolic flow or retrograde flow during diastole | 
| End-diastoliv flow velocity in the left pulmonary artery | >0.2 m/s | 
| Doppler flow in the anterior cerebral artery (ACA), renal arteries, and celiac trunk | Resistance index (RI) > 0.9 | 
| Gene | Variant Number | Allels | Restrictions Enzymes | 
|---|---|---|---|
| PTGS1 (COX1) | rs3842787 | C>T | FauI | 
| PTGES2 | rs13283456 | C>T | EcoNI | 
| PTGER4 | rs4613763 | T>C | BccI | 
| PLA2G4A | rs10798059 | G>A | BanI | 
| PLA2G4C | rs1549637 | A>T | BstYI | 
| PLA2G6 | rs4375 | T>C | AvrII | 
| PLA2G7 | rs1805017 | C>T | BclI | 
| PLA2G7 | rs1051931 | A>G | SatI | 
| Characteristic | ||||||||||||
| No PDA n = 42 | p | PDA n = 36 | p | HsPDA n = 21 | p | PDA vs. HsPDA | p | |||||
| Sex | Female | 33 | p = 0.0932 | Female | 12 | p = 0.089 | Female | 7 | p = 1.000 | Female | 12 vs. 7 | p = 1.000 | 
| Male | 30 | Male | 24 | Male | 14 | Male | 24 vs. 14 | |||||
| Gestational Age (week) | <28 | 21 | p = 0.1350 | <28 | 18 | p = 0.111 | <28 | 13 | p = 0.176 | <28 | 18 vs. 13 | p = 0.552 | 
| >28 | 42 | >28 | 18 | >28 | 8 | >28 | 18 vs. 8 | |||||
| Birth weight (grams) | <1000 g | 17 | p = 0.0498 | <1000 g | 17 | p = 0.070 | <1000 g | 13 | p = 0.080 | <1000 g | 17 vs. 13 | p = 0.426 | 
| >1000 g | 46 | >1000 g | 19 | >1000 g | 8 | >1000 g | 19 vs. 8 | |||||
| Prenatal steroid therapy | Yes | 48 | p = 0.4544 | Yes | 30 | p = 0.524 | Yes | 18 | p = 1.000 | Yes | 30 vs. 18 | p = 1.000 | 
| No | 15 | No | 6 | No | 3 | No | 6 vs. 3 | |||||
| Invasive ventilation | Yes | 21 | p = 0.0059 | Yes | 23 | p = 0.0069 | Yes | 14 | p = 0.9532 | Yes | 23 vs. 14 | p = 0.552 | 
| No | 42 | No | 13 | No | 7 | No | 13 vs. 7 | |||||
| Pharmacological ligation | Yes | 0 | p = 0.0001 | Yes | 21 | p < 0.0001 | Yes | 21 | p < 0.0001 | Yes | 21 vs. 21 | p = 0.0017 | 
| No | 63 | No | 15 | No | 0 | No | 15 vs. 0 | |||||
| Complications | ||||||||||||
| NEC | Yes | 6 | p = 0.0118 | Yes | 11 | p = 0.012 | Yes | 5 | p = 0.501 | Yes | 11 vs. 5 | p = 0.895 | 
| No | 57 | No | 25 | No | 15 | No | 25 vs. 15 | |||||
| IVH | Yes | 21 | p = 0.0879 | Yes | 19 | p = 0.0629 | Yes | 14 | p = 0.1017 | Yes | 19 vs. 14 | p = 0.4554 | 
| No | 42 | No | 17 | No | 7 | No | 17 vs. 7 | |||||
| BPD | Yes | 27 | p = 0.0064 | Yes | 26 | p = 0.0075 | Yes | 15 | p = 0.556 | Yes | 26 vs. 15 | p = 1.0000 | 
| No | 36 | No | 10 | No | 6 | No | 10 vs. 6 | |||||
| ROP | Yes | 24 | p = 0.0364 | Yes | 22 | p = 0.048 | Yes | 13 | p = 1.000 | Yes | 22 vs. 13 | p = 1.000 | 
| No | 39 | No | 14 | No | 8 | No | 14 vs. 8 | |||||
| SNV | Model | Genotypes | Success N (%) | Failure N (%) | OR (95%CI) | p-Value | AIC | 
|---|---|---|---|---|---|---|---|
| rs1236913 | Codominant | CC | 16 (88.9) | 3 (100.0) | 1.00 | 1.000 | 20.6 | 
| CT | 2 (11.1) | 0 (0.0) | — | ||||
| rs13283456 | Codominant | CC | 18 (100.0) | 3 (100.0) | — | — | — | 
| rs4613763 | Codominant | TT | 13 (72.2) | 0 (0.0) | 1.00 | 0.042 | 14.6 | 
| TC | 5 (27.8) | 3 (100.0) | — | ||||
| rs10798059 | Codominant | GG | 7 (38.9) | 0 (0.0) | 1.00 | 0.395 | 20.5 | 
| GA | 8 (44.4) | 2 (66.7) | — | ||||
| AA | 3 (16.7) | 1 (33.3) | — | ||||
| Dominant | GG | 7 (38.9) | 0 (0.0) | 1.00 | 0.521 | 18.5 | |
| GA-AA | 11 (61.1) | 3 (100.0) | — | ||||
| Recessive | GG-GA | 15 (83.3) | 2 (66.7) | 1.00 | 0.521 | 20.8 | |
| AA | 3 (16.7) | 1 (33.3) | 2.50 (0.17–37.26) | ||||
| Overdominant | GG-AA | 10 (55.6) | 1 (33.3) | 1.00 | 0.473 | 20.7 | |
| GA | 8 (44.4) | 2 (66.7) | 2.50 (0.19–32.80) | ||||
| rs1549637 | Codominant | TT | 11 (61.1) | 3 (100.0) | 1.00 | 0.658 | 20.5 | 
| TA | 5 (27.8) | 0 (0.0) | — | ||||
| AA | 2 (11.1) | 0 (0.0) | — | ||||
| Dominant | TT | 11 (61.1) | 3 (100.0) | 1.00 | 0.521 | 18.5 | |
| TA-AA | 7 (38.9) | 0 (0.0) | — | ||||
| Recessive | TT-TA | 16 (88.9) | 3 (100.0) | 1.00 | 1.000 | 20.6 | |
| AA | 2 (11.1) | 0 (0.0) | — | ||||
| Overdominant | TT-AA | 13 (72.2) | 3 (100.0) | 1.00 | 0.549 | 19.4 | |
| TA | 5 (27.8) | 0 (0.0) | — | ||||
| rs4375 | Codominant | TT | 3 (16.7) | 1 (33.3) | 1.00 | 1.000 | 22.0 | 
| TC | 12 (66.7) | 2 (66.7) | 0.50 (0.03–7.54) | ||||
| CC | 3 (16.7) | 0 (0.0) | — | ||||
| Dominant | TT | 3 (16.7) | 1 (33.3) | 1.00 | 0.521 | 20.8 | |
| TC-CC | 15 (83.3) | 2 (66.7) | 0.40 (0.03–5.96) | ||||
| Recessive | TT-TC | 15 (83.3) | 3 (100.0) | 1.00 | 1.000 | 20.2 | |
| CC | 3 (16.7) | 0 (0.0) | — | ||||
| Overdominant | TT-CC | 6 (33.3) | 1 (33.3) | 1.00 | 1.000 | 21.2 | |
| TC | 12 (66.7) | 2 (66.7) | 1.00 (0.07–13.37) | ||||
| rs1805017 | Codominant | CC | 11 (61.1) | 0 (0.0) | 1.00 | 0.090 | 16.2 | 
| CT | 7 (38.9) | 3 (100.0) | — | ||||
| rs1051931 | Codominant | GG | 9 (50.0) | 1 (33.3) | 1.00 | 1.000 | 22.5 | 
| GA | 8 (44.4) | 2 (66.7) | 2.25 (0.17–29.77) | ||||
| AA | 1 (5.6) | 0 (0.0) | — | ||||
| Dominant | GG | 9 (50.0) | 1 (33.3) | 1.00 | 0.589 | 20.9 | |
| GA-AA | 9 (50.0) | 2 (66.7) | 2.00 (0.15–26.18) | ||||
| Recessive | GG-GA | 17 (94.4) | 3 (100.0) | 1.00 | 1.000 | 20.9 | |
| AA | 1 (5.6) | 0 (0.0) | — | ||||
| Overdominant | GG-AA | 10 (55.6) | 1 (33.3) | 1.00 | 0.473 | 20.7 | |
| GA | 8 (44.4) | 2 (66.7) | 2.50 (0.19–32.80) | 
| SNV | Model | Genotypes | Ibuprofen N (%) | Paracetamol N (%) | OR (95%CI) | p-Value | AIC | 
|---|---|---|---|---|---|---|---|
| rs1236913 | Codominant | CC | 2 (66.7) | 13 (92.9) | 1.00 | 0.256 | 18.6 | 
| CT | 1 (33.3) | 1 (7.1) | 0.15 (0.01–3.58) | ||||
| rs13283456 | Codominant | CC | 3 (100.0) | 14 (100.0) | — | — | — | 
| rs4613763 | Codominant | TT | 3 (100.0) | 8 (57.1) | 1.00 | 0.515 | 16.9 | 
| TC | 0 (0.0) | 6 (42.9) | — | ||||
| rs10798059 | Codominant | GG | 2 (66.7) | 4 (28.6) | 1.00 | 0.290 | 18.1 | 
| GA | 0 (0.0) | 7 (50.0) | — | ||||
| AA | 1 (33.3) | 3 (21.4) | 1.50 (0.09–25.39) | ||||
| Dominant | GG | 2 (66.7) | 4 (28.6) | 1.00 | 0.220 | 18.3 | |
| GA-AA | 1 (33.3) | 10 (71.4) | 5.00 (0.35–71.90) | ||||
| Recessive | GG-GA | 2 (66.7) | 11 (78.6) | 1.00 | 0.669 | 19.7 | |
| AA | 1 (33.3) | 3 (21.4) | 0.55 (0.04–8.27) | ||||
| Overdominant | GG-AA | 3 (100.0) | 7 (50.0) | 1.00 | 0.228 | 16.2 | |
| GA | 0 (0.0) | 7 (50.0) | — | ||||
| rs1549637 | Codominant | TT | 3 (100.0) | 7 (50.0) | 1.00 | 0.669 | 18.2 | 
| TA | 0 (0.0) | 5 (35.7) | — | ||||
| AA | 0 (0.0) | 2 (14.3) | — | ||||
| Dominant | TT | 3 (100.0) | 7 (50.0) | 1.00 | 0.228 | 16.2 | |
| TA-AA | 0 (0.0) | 7 (50.0) | — | ||||
| Recessive | TT-TA | 3 (100.0) | 12 (85.7) | 1.00 | 1.000 | 19.0 | |
| AA | 0 (0.0) | 2 (14.3) | — | ||||
| Overdominant | TT-AA | 3 (100.0) | 9 (64.3) | 1.00 | 0.515 | 17.5 | |
| TA | 0 (0.0) | 5 (35.7) | — | ||||
| rs4375 | Codominant | TT | 1 (33.3) | 3 (21.4) | 1.00 | 1.000 | 20.9 | 
| TC | 2 (66.7) | 9 (64.3) | 1.50 (0.10–23.07) | ||||
| CC | 0 (0.0) | 2 (14.3) | — | ||||
| Dominant | TT | 1 (33.3) | 3 (21.4) | 1.00 | 0.669 | 19.7 | |
| TC-CC | 2 (66.7) | 11 (78.6) | 1.83 (0.12–27.80) | ||||
| Recessive | TT-TC | 3 (100.0) | 12 (85.7) | 1.00 | 1.000 | 19.0 | |
| CC | 0 (0.0) | 2 (14.3) | — | ||||
| Overdominant | TT-CC | 1 (33.3) | 5 (35.7) | 1.00 | 0.937 | 19.8 | |
| TC | 2 (66.7) | 9 (64.3) | 0.90 (0.06–12.58) | ||||
| rs1805017 | Codominant | CC | 0 (0.0) | 8 (57.1) | 1.00 | 0.206 | 15.5 | 
| CT | 3 (100.0) | 6 (42.9) | — | ||||
| rs1051931 | Codominant | GG | 2 (66.7) | 6 (42.9) | 1.00 | 0.451 | 19.3 | 
| GA | 1 (33.3) | 8 (57.1) | 2.67 (0.19–36.75) | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minta, M.; Kurzawińska, G.; Banach Minta, Z.; Seremak Mrozikiewicz, A.; Szpecht, D. Prostaglandin Pathway Polymorphisms and HsPDA Treatment Outcomes in Preterm Infants below 32 Weeks: Pilot Study. Genes 2025, 16, 1271. https://doi.org/10.3390/genes16111271
Minta M, Kurzawińska G, Banach Minta Z, Seremak Mrozikiewicz A, Szpecht D. Prostaglandin Pathway Polymorphisms and HsPDA Treatment Outcomes in Preterm Infants below 32 Weeks: Pilot Study. Genes. 2025; 16(11):1271. https://doi.org/10.3390/genes16111271
Chicago/Turabian StyleMinta, Marcin, Grażyna Kurzawińska, Zuzanna Banach Minta, Agnieszka Seremak Mrozikiewicz, and Dawid Szpecht. 2025. "Prostaglandin Pathway Polymorphisms and HsPDA Treatment Outcomes in Preterm Infants below 32 Weeks: Pilot Study" Genes 16, no. 11: 1271. https://doi.org/10.3390/genes16111271
APA StyleMinta, M., Kurzawińska, G., Banach Minta, Z., Seremak Mrozikiewicz, A., & Szpecht, D. (2025). Prostaglandin Pathway Polymorphisms and HsPDA Treatment Outcomes in Preterm Infants below 32 Weeks: Pilot Study. Genes, 16(11), 1271. https://doi.org/10.3390/genes16111271
 
        


 
       