Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experiment Design
2.2. Processing of Frozen Heart Samples
2.3. RNA Extraction from Cardiac Tissue
2.4. cDNA Synthesis and qPCR
2.5. 8-Hydroxydeoxyguanosine (8-OHdG) Assay
2.6. RNA Sequencing and Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norsk, P.; Asmar, A.; Damgaard, M.; Christensen, N.J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 2015, 593, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Perhonen, M.A.; Franco, F.; Lane, L.D.; Buckey, J.C.; Blomqvist, C.G.; Zerwekh, J.E.; Peshock, R.M.; Weatherall, P.T.; Levine, B.D. Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 2001, 91, 645–653. [Google Scholar] [CrossRef]
- Summers, R.L.; Martin, D.S.; Meck, J.V.; Coleman, T.G. Mechanism of spaceflight-induced changes in left ventricular mass. Am. J. Cardiol. 2005, 95, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Khine, H.W.; Steding-Ehrenborg, K.; Hastings, J.L.; Kowal, J.; Daniels, J.D.; Page, R.L.; Goldberger, J.J.; Ng, J.; Adams-Huet, B.; Bungo, M.W.; et al. Effects of Prolonged Spaceflight on Atrial Size, Atrial Electrophysiology, and Risk of Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2018, 11, e005959. [Google Scholar] [CrossRef] [PubMed]
- Watenpaugh, D.E. Fluid volume control during short-term space flight and implications for human performance. J. Exp. Biol. 2001, 204, 3209–3215. [Google Scholar] [CrossRef]
- Marshall-Goebel, K.; Laurie, S.S.; Alferova, I.V.; Arbeille, P.; Aunon-Chancellor, S.M.; Ebert, D.J.; Lee, S.M.C.; Macias, B.R.; Martin, D.S.; Pattarini, J.M.; et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw. Open 2019, 2, e1915011. [Google Scholar] [CrossRef]
- Migeotte, P.F.; Prisk, G.K.; Paiva, M. Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1995–H2006. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.C.; Feiveson, A.H.; Stein, S.; Stenger, M.B.; Platts, S.H. Orthostatic Intolerance After ISS and Space Shuttle Missions. Aerosp. Med. Hum. Perform. 2015, 86, A54–A67. [Google Scholar] [CrossRef] [PubMed]
- Hughson, R.L.; Robertson, A.D.; Arbeille, P.; Shoemaker, J.K.; Rush, J.W.; Fraser, K.S.; Greaves, D.K. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H628–H638. [Google Scholar] [CrossRef]
- Globus, R.K.; Morey-Holton, E. Hindlimb unloading: Rodent analog for microgravity. J. Appl. Physiol. 2016, 120, 1196–1206. [Google Scholar] [CrossRef]
- Morey-Holton, E.R.; Globus, R.K. Hindlimb unloading rodent model: Technical aspects. J. Appl. Physiol. 2002, 92, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.X.; Zhang, L.F.; Shang, H.H.; Yu, Z.B.; Qian, Y.Q. Echocardiographic assessment of left ventricular structure and function after simulated weightlessness in rats. Space Med. Med. Eng. (Beijing) 1999, 12, 88–91. [Google Scholar]
- Levine, B.D.; Zuckerman, J.H.; Pawelczyk, J.A. Cardiac atrophy after bed-rest deconditioning: A nonneural mechanism for orthostatic intolerance. Circulation 1997, 96, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, T.A.; Levine, B.D.; Tillery, T.; Peshock, R.M.; Hastings, J.L.; Schneider, S.M.; Macias, B.R.; Biolo, G.; Hargens, A.R. Cardiac atrophy in women following bed rest. J. Appl. Physiol. 2007, 103, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Westby, C.M.; Martin, D.S.; Lee, S.M.; Stenger, M.B.; Platts, S.H. Left ventricular remodeling during and after 60 days of sedentary head-down bed rest. J. Appl. Physiol. 2016, 120, 956–964. [Google Scholar] [CrossRef]
- Shibata, S.; Perhonen, M.; Levine, B.D. Supine cycling plus volume loading prevent cardiovascular deconditioning during bed rest. J. Appl. Physiol. 2010, 108, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Tsvirkun, D.; Bourreau, J.; Mieuset, A.; Garo, F.; Vinogradova, O.; Larina, I.; Navasiolava, N.; Gauquelin-Koch, G.; Gharib, C.; Custaud, M.A. Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats. PLoS ONE 2012, 7, e39923. [Google Scholar] [CrossRef] [PubMed]
- Respress, J.L.; Gershovich, P.M.; Wang, T.; Reynolds, J.O.; Skapura, D.G.; Sutton, J.P.; Miyake, C.Y.; Wehrens, X.H. Long-term simulated microgravity causes cardiac RyR2 phosphorylation and arrhythmias in mice. Int. J. Cardiol. 2014, 176, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Soulsby, M.E.; Scott, J.L. Effects of aminoguanidine on tissue oxidative stress induced by hindlimb unloading in rats. Ann. Clin. Lab. Sci. 2009, 39, 64–70. [Google Scholar]
- Morpheus. Available online: https://software.broadinstitute.org/morpheus/ (accessed on 13 April 2019).
- Chen, J.; Aronow, B.J.; Jegga, A.G. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinform. 2009, 10, 73. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed]
- Ulanova, A.; Gritsyna, Y.; Salmov, N.; Lomonosova, Y.; Belova, S.; Nemirovskaya, T.; Shenkman, B.; Vikhlyantsev, I. Effect of L-Arginine on Titin Expression in Rat Soleus Muscle After Hindlimb Unloading. Front. Physiol. 2019, 10, 1221. [Google Scholar] [CrossRef]
- Marzuca-Nassr, G.N.; Fortes, M.A.S.; Guimaraes-Ferreira, L.; Murata, G.M.; Vitzel, K.F.; Vasconcelos, D.A.A.; Bassit, R.A.; Curi, R. Short-term creatine supplementation changes protein metabolism signaling in hindlimb suspension. Braz. J. Med. Biol. Res. 2019, 52, e8391. [Google Scholar] [CrossRef] [PubMed]
- Dehority, W.; Halloran, B.P.; Bikle, D.D.; Curren, T.; Kostenuik, P.J.; Wronski, T.J.; Shen, Y.; Rabkin, B.; Bouraoui, A.; Morey-Holton, E. Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am. J. Physiol. 1999, 276, E62–E69. [Google Scholar] [CrossRef] [PubMed]
- North, B.J.; Rosenberg, M.A.; Jeganathan, K.B.; Hafner, A.V.; Michan, S.; Dai, J.; Baker, D.J.; Cen, Y.; Wu, L.E.; Sauve, A.A.; et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014, 33, 1438–1453. [Google Scholar] [CrossRef]
- Wang, F.; Nguyen, M.; Qin, F.X.; Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007, 6, 505–514. [Google Scholar] [CrossRef]
- Seawright, J.W.; Samman, Y.; Sridharan, V.; Mao, X.W.; Cao, M.; Singh, P.; Melnyk, S.; Koturbash, I.; Nelson, G.A.; Hauer-Jensen, M.; et al. Effects of low-dose rate gamma-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart. PLoS ONE 2017, 12, e0180594. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Lambris, J.D. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J. Immunol. 2013, 190, 3831–3838. [Google Scholar] [CrossRef]
- Bjerre, M.; Hansen, T.K.; Flyvbjerg, A. Complement activation and cardiovascular disease. Horm. Metab. Res. 2008, 40, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.I.; Skjoedt, M.O.; Siow Tan, Y.; Rosbjerg, A.; Garred, P.; Stahl, G.L. Endogenous and natural complement inhibitor attenuates myocardial injury and arterial thrombogenesis. Circulation 2012, 126, 2227–2235. [Google Scholar] [CrossRef]
- Sekine, H.; Kinser, T.T.; Qiao, F.; Martinez, E.; Paulling, E.; Ruiz, P.; Gilkeson, G.S.; Tomlinson, S. The benefit of targeted and selective inhibition of the alternative complement pathway for modulating autoimmunity and renal disease in MRL/lpr mice. Arthritis Rheum. 2011, 63, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Qi, X.; Li, Q.; Jia, W.; Wei, L.; Huang, A.; Liu, K.; Li, Z. Increased complements and high-sensitivity C-reactive protein predict heart failure in acute myocardial infarction. Biomed. Rep. 2016, 5, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cai, D. Complement components sC5b-9 and CH50 predict prognosis in heart failure patients combined with hypertension. Am. J. Hypertens. 2019, 33, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.A.L.; Patzelt, J.; Sauter, M.; Maier, P.; Gekeler, S.; Klingel, K.; Kandolf, R.; Seizer, P.; Gawaz, M.; Geisler, T.; et al. Myocardial expression of the anaphylatoxin receptor C3aR is associated with cardiac inflammation and prognosis in patients with non-ischaemic heart failure. ESC Heart Fail. 2018, 5, 846–857. [Google Scholar] [CrossRef] [PubMed]
- De Hoog, V.C.; Timmers, L.; Van Duijvenvoorde, A.; De Jager, S.C.; Van Middelaar, B.J.; Smeets, M.B.; Woodruff, T.M.; Doevendans, P.A.; Pasterkamp, G.; Hack, C.E.; et al. Leucocyte expression of complement C5a receptors exacerbates infarct size after myocardial reperfusion injury. Cardiovasc. Res. 2014, 103, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Herzog, C.; Larmann, J.; Schmitz, M.; Hilfiker-Kleiner, D.; Gessner, J.E.; Theilmeier, G. The receptor for activated complement factor 5 (C5aR) conveys myocardial ischemic damage by mediating neutrophil transmigration. Immunobiology 2013, 218, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Jenei, Z.M.; Zima, E.; Csuka, D.; Munthe-Fog, L.; Hein, E.; Szeplaki, G.; Becker, D.; Karadi, I.; Prohaszka, Z.; Garred, P.; et al. Complement activation and its prognostic role in post-cardiac arrest patients. Scand. J. Immunol. 2014, 79, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Kashirina, D.N.; Percy, A.J.; Pastushkova, L.K.; Borchers, C.H.; Kireev, K.S.; Ivanisenko, V.A.; Kononikhin, A.S.; Nikolaev, E.N.; Larina, I.M. The molecular mechanisms driving physiological changes after long duration space flights revealed by quantitative analysis of human blood proteins. BMC Med. Genom. 2019, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Shi, J.; Zhang, P.; Wang, K.; Li, J.; Liu, H.; Zhou, Y.; Xu, X.; Hao, J.; Sun, X.; et al. Simulated microgravity disrupts intestinal homeostasis and increases colitis susceptibility. FASEB J. 2015, 29, 3263–3273. [Google Scholar] [CrossRef]
- Zhou, Y.; Ni, H.; Li, M.; Sanzari, J.K.; Diffenderfer, E.S.; Lin, L.; Kennedy, A.R.; Weissman, D. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS ONE 2012, 7, e44329. [Google Scholar] [CrossRef]
- Jin, M.; Zhang, H.; Zhao, K.; Xu, C.; Shao, D.; Huang, Q.; Shi, J.; Yang, H. Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness. Front. Physiol. 2018, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Knuefermann, P.; Schwederski, M.; Velten, M.; Krings, P.; Ehrentraut, H.; Rudiger, M.; Boehm, O.; Fink, K.; Dreiner, U.; Grohe, C.; et al. Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: Role of toll-like receptor 9. Cardiovasc. Res. 2008, 78, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.D.; Ramos, R.A.; Tobias, P.S.; Ulevitch, R.J.; Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990, 249, 1431–1433. [Google Scholar] [CrossRef]
- Guo, L.; Akahori, H.; Harari, E.; Smith, S.L.; Polavarapu, R.; Karmali, V.; Otsuka, F.; Gannon, R.L.; Braumann, R.E.; Dickinson, M.H.; et al. CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J. Clin. Investig. 2018, 128, 1106–1124. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.A.; Sulciner, M.L.; Nowicki, K.D.; Miller, A.D.; Burdo, T.H.; Williams, K.C. Elevated numbers of CD163+ macrophages in hearts of simian immunodeficiency virus-infected monkeys correlate with cardiac pathology and fibrosis. AIDS Res. Hum. Retroviruses 2014, 30, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Seawright, J.W.; Sridharan, V.; Landes, R.D.; Cao, M.; Singh, P.; Koturbash, I.; Mao, X.W.; Miousse, I.R.; Singh, S.P.; Nelson, G.A.; et al. Effects of low-dose oxygen ions and protons on cardiac function and structure in male C57BL/6J mice. Life Sci. Space Res. 2019, 20, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, L.; Kiffer, F.; Puukila, S.; Lowe, M.G.; Goo, B.; Luthens, A.; Schreurs, A.S.; Torres, S.M.; Steczina, S.; Tahimic, C.G.T.; et al. Mitochondria-Targeted Human Catalase in the Mouse Longevity MCAT Model Mitigates Head-Tilt Bedrest-Induced Neuro-Inflammation in the Hippocampus. Life 2022, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Blackwell, V.K.; Harandi, B.; Gibbons, A.C.; Siu, O.; Irby, I.; Rees, A.; Cornejal, N.; Sattler, K.M.; Sheng, T.; et al. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024, 10, 63. [Google Scholar] [CrossRef]
- Yu, L.; Feng, Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm. 2018, 2018, 9874109. [Google Scholar] [CrossRef]
- Parizadeh, S.M.; Ghandehari, M.; Heydari-Majd, M.; Seifi, S.; Mardani, R.; Parizadeh, S.M.; Ghayour-Mobarhan, M.; Ferns, G.A.; Hassanian, S.M.; Avan, A. Toll-like Receptors Signaling Pathways as a Potential Therapeutic Target in Cardiovascular Disease. Curr. Pharm. Des. 2018, 24, 1887–1898. [Google Scholar] [CrossRef]
- Satoh, M.; Akatsu, T.; Ishikawa, Y.; Minami, Y.; Takahashi, Y.; Nakamura, M. Association between toll-like receptor 8 expression and adverse clinical outcomes in patients with enterovirus-associated dilated cardiomyopathy. Am. Heart J. 2007, 154, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, A.; Das, P.; Hashimoto, I.; Nakao, T.; Deguchi, Y.; Gouraud, S.S.; Waki, H.; Muragaki, Y.; Maeda, M. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS ONE 2014, 9, e112811. [Google Scholar] [CrossRef] [PubMed]
- Bonney, S.; Kominsky, D.; Brodsky, K.; Eltzschig, H.; Walker, L.; Eckle, T. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS ONE 2013, 8, e71493. [Google Scholar] [CrossRef]
- Flynn-Evans, E.E.; Barger, L.K.; Kubey, A.A.; Sullivan, J.P.; Czeisler, C.A. Circadian misalignment affects sleep and medication use before and during spaceflight. NPJ Microgravity 2016, 2, 15019. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.I.; Rutter, L.; Ong, Q.; Muratani, M. Integrated RNA-seq Analysis Indicates Asynchrony in Clock Genes between Tissues under Spaceflight. Life 2020, 10, 196. [Google Scholar] [CrossRef]
- Ma, Y.; Kong, L.; Nan, K.; Qi, S.; Ru, L.; Ding, C.; Wang, D. Apolipoprotein-J prevents angiotensin II-induced apoptosis in neonatal rat ventricular cells. Lipids Health Dis. 2015, 14, 114. [Google Scholar] [CrossRef]
- Hirschenson, J.; Melgar-Bermudez, E.; Mailloux, R.J. The Uncoupling Proteins: A Systematic Review on the Mechanism Used in the Prevention of Oxidative Stress. Antioxidants 2022, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, G.; Fasciolo, G.; Magnacca, N.; Goglia, F.; Lombardi, A.; Venditti, P. Oxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality. J. Physiol. Biochem. 2022, 78, 415–425. [Google Scholar] [CrossRef]
- da Silveira, W.A.; Fazelinia, H.; Rosenthal, S.B.; Laiakis, E.C.; Kim, M.S.; Meydan, C.; Kidane, Y.; Rathi, K.S.; Smith, S.M.; Stear, B.; et al. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020, 183, 1185–1201. [Google Scholar] [CrossRef]
- Indo, H.P.; Majima, H.J.; Terada, M.; Suenaga, S.; Tomita, K.; Yamada, S.; Higashibata, A.; Ishioka, N.; Kanekura, T.; Nonaka, I.; et al. Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space. Sci. Rep. 2016, 6, 39015. [Google Scholar] [CrossRef]
- Zhuang, J.; Chen, L.; Li, G.; Xia, L.; Wu, S.; Leng, J.; Tao, X.; Hong, J.; Wu, Y.; Wang, S.; et al. RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and dysfunction by accelerating mitochondrial pathological fission. Inflamm. Res. 2022, 71, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Qiu, K.; Zhu, J.; Wu, Y. RCAN1 in cardiovascular diseases: Molecular mechanisms and a potential therapeutic target. Mol. Med. 2020, 26, 118. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tahimic, C.G.T.; Almeida, E.A.C.; Globus, R.K. Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart. Int. J. Mol. Sci. 2021, 22, 9088. [Google Scholar] [CrossRef] [PubMed]
DEGs | Log2 FC | p adj | Gene Name |
---|---|---|---|
Actg2 | −2.15 | 0.0241 | Actin, γ 2, smooth muscle, enteric |
Adhfe1 | −0.53 | 0.0003 | Alcohol dehydrogenase, iron-containing, 1 |
Alox5ap | 0.58 | 0.0454 | Arachidonate 5-lipoxygenase activating protein |
Aplnr | −0.41 | 0.0457 | Apelin receptor |
Aqp7 | −0.77 | 0.0007 | Aquaporin 7 |
Arl11 | 0.79 | 0.0357 | ADP-ribosylation factor-like GTPase 11 |
Arntl | −1.92 | 1.77 × 10−12 | Aryl hydrocarbon receptor nuclear translocator-like |
Asb2 | −0.32 | 0.0002 | Ankyrin repeat and SOCS box-containing 2 |
Atp2a1 | −0.77 | 0.0284 | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 |
Atp4a | −1.69 | 0.0075 | ATPase H+/K+ transporting subunit α |
Bcat2 | −0.40 | 0.0038 | Branched chain amino acid transaminase 2 |
Bckdha | −0.40 | 0.0083 | Branched chain ketoacid dehydrogenase E1, α polypeptide |
Bcl6b | −0.61 | 0.0055 | BCL6B, transcription repressor |
C1qa | 0.57 | 0.0483 | Complement C1q A chain |
C1qb | 0.74 | 0.0005 | Complement C1q B chain |
C1qc | 0.69 | 0.0007 | Complement C1q C chain |
C5ar1 | 0.61 | 0.0483 | Complement C5a receptor 1 |
Car4 | −1.15 | 0.0017 | Carbonic anhydrase 4 |
Cd14 | 0.67 | 0.0314 | CD14 molecule |
Cd163 | 0.92 | 0.0004 | CD163 molecule |
Cd44 | 0.33 | 0.0353 | CD44 molecule |
Cd68 | 0.99 | 0.0059 | CD68 molecule |
Cd93 | −0.42 | 0.0065 | CD93 molecule |
Cdkn1a | −0.75 | 0.0011 | Cyclin-dependent kinase inhibitor 1A |
Cited4 | −0.52 | 0.0296 | Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 4 |
Clec4a1 | 0.86 | 0.0121 | C-type lectin domain family 4, member A1 |
Clock | −0.44 | 0.0002 | Clock circadian regulator |
Clu | 0.44 | 0.0055 | Clusterin |
Col5a3 | −0.66 | 0.0280 | Collagen type V α 3 chain |
Crispld2 | −0.45 | 0.0234 | Cysteine-rich secretory protein LCCL domain-containing 2 |
Csf1r | 0.51 | 0.0111 | Colony stimulating factor 1 receptor |
Dkk3 | −0.30 | 0.0351 | Dickkopf WNT signaling pathway inhibitor 3 |
Dot1l | −0.44 | 0.0190 | DOT1-like histone lysine methyltransferase |
Ecrg4 | −1.27 | 0.0299 | ECRG4 augurin precursor |
Eepd1 | −0.44 | 0.0007 | Endonuclease/exonuclease/phosphatase family domain-containing 1 |
Ephx1 | 0.84 | 0.0007 | Epoxide hydrolase 1 |
Exoc4 | 0.35 | 0.0073 | Exocyst complex component 4 |
F5 | 0.86 | 0.0345 | Coagulation factor V |
Fabp3 | −0.41 | 1.03 × 10−5 | Fatty acid-binding protein 3 |
Fam160a1 | −0.51 | 0.0369 | Family with sequence similarity 160, member A1 |
Fam220a | −0.40 | 0.0010 | Family with sequence similarity 220, member A |
Fam26e | −0.67 | 0.0235 | Calcium homeostasis modulator family member 5 |
Fcgr2b | 0.98 | 0.0314 | Fc fragment of IgG receptor IIb |
Fcna | 0.63 | 0.0015 | Ficolin A |
Fhl2 | −0.51 | 0.0121 | Four and a half LIM domains 2 |
Gnb3 | −0.47 | 0.0093 | G protein subunit β 3 |
Gng2 | 0.47 | 0.0457 | G protein subunit γ 2 |
Gpsm1 | −0.42 | 0.0063 | G-protein signaling modulator 1 |
Grip2 | −1.46 | 0.0022 | Glutamate receptor interacting protein 2 |
Gsn | −0.49 | 0.0008 | Gelsolin |
Gstz1 | −0.69 | 0.0006 | Glutathione S-transferase zeta 1 |
Hadh | −0.37 | 1.60 × 10−5 | Hydroxyacyl-CoA dehydrogenase |
Heyl | −0.31 | 0.0105 | Hairy/enhancer-of-split related with YRPW motif-like |
Hspa5 | −0.34 | 0.0456 | Heat shock protein family A member 5 |
Inha | 0.71 | 0.0345 | Inhibin subunit α |
Ispd | −0.44 | 0.0190 | Isoprenoid synthase domain-containing |
Itga6 | −0.36 | 0.0011 | Integrin subunit α 6 |
Itgam | 0.90 | 0.0061 | Integrin subunit α M |
Itgb2 | 0.80 | 0.0108 | Integrin subunit β 2 |
Kank1 | −0.39 | 0.0307 | KN motif and ankyrin repeat domains 1 |
Kcnma1 | −2.16 | 0.0008 | Potassium large conductance calcium-activated channel, subfamily M, α member 1 |
Laptm5 | 0.50 | 0.0117 | Lysosomal protein transmembrane 5 |
Lbh | −0.38 | 0.0226 | Limb bud and heart development |
Lcp1 | 0.42 | 0.0162 | Lymphocyte cytosolic protein 1 |
Leo1 | −0.34 | 0.0295 | LEO1 homolog, Paf1/RNA polymerase II complex component |
Lgals3 | 0.81 | 0.0077 | Galectin 3 |
Lilrb3l | 0.82 | 0.0435 | Leukocyte immunoglobulin-like receptor subfamily B member 3-like |
Limd1 | −0.48 | 0.0015 | LIM domain-containing 1 |
Lingo4 | −0.55 | 0.0142 | Leucine-rich repeat and Ig domain-containing 4 |
Map3k7cl | −0.66 | 0.0369 | MAP3K7 C-terminal-like |
Mill1 | −1.78 | 0.0007 | MHC I-like leukocyte 1 |
Mrc1 | 0.70 | 0.0105 | Mannose receptor, C type 1 |
Mtfp1 | −0.33 | 0.0250 | Mitochondrial fission process 1 |
Mtus1 | −0.30 | 0.0077 | Mitochondrial tumor suppressor 1 |
Mx2 | −0.45 | 0.0004 | MX dynamin-like GTPase 2 |
Myh11 | −1.46 | 0.0483 | Myosin heavy chain 11 |
Myo5b | −0.46 | 0.0261 | Myosin Vb |
Myom2 | −0.85 | 1.53 × 10−14 | Myomesin 2 |
Nckap1l | 0.72 | 0.0091 | NCK associated protein 1-like |
Npas2 | −1.43 | 1.51 × 10−6 | Neuronal PAS domain protein 2 |
Nrp2 | −0.31 | 0.0457 | Neuropilin 2 |
Ntsr1 | 1.01 | 0.0405 | Neurotensin receptor 1 |
Nudt4 | 0.37 | 0.0073 | Nudix hydrolase 4 |
P2rx4 | 0.42 | 0.0483 | Purinergic receptor P2X 4 |
Paqr6 | −0.57 | 0.0250 | Progestin and adipoQ receptor family member 6 |
Per2 | 0.84 | 1.29 × 10−9 | Period circadian regulator 2 |
Per3 | 1.25 | 0.0226 | Period circadian regulator 3 |
Phlda1 | −0.65 | 0.0420 | Pleckstrin homology-like domain, family A, member 1 |
Pi16 | −0.58 | 0.0215 | Peptidase inhibitor 16 |
Pik3ip1 | 0.43 | 0.0043 | Phosphoinositide-3-kinase interacting protein 1 |
Ppp1r14c | −0.34 | 0.0405 | Protein phosphatase 1, regulatory (inhibitor) subunit 14c |
Ppp1r3c | −0.41 | 0.0065 | Protein phosphatase 1, regulatory subunit 3C |
Rapgef5 | 0.31 | 0.0451 | Rap guanine nucleotide exchange factor (GEF) 5 |
Rasd2 | −0.77 | 0.0091 | RASD family, member 2 |
Rasl11b | −0.59 | 0.0105 | RAS-like family 11 member B |
Rcan1 | −0.63 | 0.0005 | Regulator of calcineurin 1 |
Rhobtb1 | 0.82 | 2.92 × 10−9 | Rho-related BTB domain-containing 1 |
Rhoj | −0.41 | 0.0210 | Ras homolog family member J |
Rimbp2 | −0.62 | 0.0025 | RIMS-binding protein 2 |
Rpl3 | 0.46 | 0.0120 | Ribosomal protein L3 |
Rpl3l | −0.62 | 0.0004 | Ribosomal protein L3-like |
S100a10 | 0.37 | 0.0154 | S100 calcium-binding protein A10 |
S100a4 | 0.84 | 1.60 5 | S100 calcium-binding protein A4 |
Slc38a2 | −0.31 | 0.0015 | Solute carrier family 38, member 2 |
Slc41a3 | −0.87 | 5.13 × 10−7 | Solute carrier family 41, member 3 |
Slc8a2 | −1.94 | 0.0454 | Solute carrier family 8 member A2 |
Smyd2 | −0.38 | 0.0483 | SET and MYND domain-containing 2 |
Sparcl1 | −0.40 | 0.0015 | SPARC-like 1 |
Srebf1 | −0.32 | 0.0166 | Sterol regulatory element-binding transcription factor 1 |
Stxbp1 | 0.34 | 0.0038 | Syntaxin-binding protein 1 |
Tef | 0.74 | 0.0002 | TEF, PAR bZIP transcription factor |
Tf | 0.64 | 0.0295 | Transferrin |
Tfrc | −0.51 | 0.0142 | Transferrin receptor |
Tgm1 | 1.11 | 0.0084 | Transglutaminase 1 |
Tlr8 | 1.06 | 0.0053 | Toll-like receptor 8 |
Tmem176b | 0.31 | 0.0197 | Transmembrane protein 176B |
Tmem179 | −0.51 | 0.0091 | Transmembrane protein 179 |
Tp53i11 | −0.42 | 0.0051 | Tumor protein p53 inducible protein 11 |
Tpsb2 | −0.78 | 0.0339 | Tryptase β 2 |
Trim16 | −0.36 | 0.0357 | Tripartite motif-containing 16 |
Tspan18 | −0.57 | 0.0084 | Tetraspanin 18 |
Tut1 | 0.51 | 0.0277 | Terminal uridylyl transferase 1, U6 snRNA-specific |
Tyrobp | 0.50 | 0.0365 | Transmembrane immune signaling adaptor Tyrobp |
Ucp3 | −1.69 | 4.13 × 10−5 | Uncoupling protein 3 |
Wee1 | 0.47 | 0.0357 | WEE1 G2 checkpoint kinase |
Name | FDR | No. of DEGs | Gene Symbol |
---|---|---|---|
CD molecules, C-type lectin domain family | 1.99 × 10−8 | 15 | Mrc1, Pi16, Itga6, Itgam, Itgb2, Tlr8, Cd163, Tfrc, Cd93, Csf1r, Cd14, Fcgr2b, Cd44, Cd68, C5ar1 |
CD molecules, complement system, LY6/PLAUR domain-containing | 4.69 × 10−7 | 6 | Itgam, Itgb2, C1qa, C1qb, C1qc, C5ar1 |
Scavenger receptors | 0.0002 | 4 | Mrc1, Cd163, Cd14, Cd68 |
Basic helix–loop–helix proteins | 0.0026 | 5 | Srebf1, Clock, Heyl, Bmal1, Npas2 |
CD molecules, protein phosphatase 1 regulatory subunits, integrin α subunits | 0.0407 | 2 | Itga6, Itgam |
Rho family GTPases | 0.0407 | 2 | Rhoj, Rhobtb1 |
S100 calcium-binding proteins, EF-hand domain-containing | 0.0407 | 2 | S100a4, S100a10 |
Classification | Disease | FDR | No. of DEGs |
---|---|---|---|
CVD | Libman–Sacks disease (nonbacterial thrombotic endocarditis) | 0.0059 | 4 |
CVD | Coronary restenosis (is_implicated_in) | 0.0150 | 2 |
CVD | Abdominal aortic aneurysm (is_marker_for) | 0.0208 | 2 |
CVD | Myocardial infarction (is_implicated_in) | 0.0208 | 4 |
CVD | Posterior choroidal artery infarction | 0.0218 | 2 |
CVD | Peripheral arterial disease | 0.0330 | 3 |
CVD | Hypertension (is_implicated_in) | 0.0336 | 4 |
Immune disorder | C1q deficiency | 4.50 × 10−5 | 3 |
Immune disorder | Lupus erythematosus, systemic | 0.0013 | 5 |
Immune disorder | Complement deficiency disease | 0.0125 | 3 |
Immune disorder | Systemic lupus erythematosus (implicated_via_orthology) | 0.0200 | 3 |
Metabolic disease | Obesity | 2.83 × 10−9 | 13 |
Metabolic disease | Endogenous hyperinsulinism | 0.0007 | 4 |
Metabolic disease | Exogenous hyperinsulinism | 0.0007 | 4 |
Metabolic disease | Compensatory hyperinsulinemia | 0.0007 | 4 |
Metabolic disease | Insulin resistance | 0.0007 | 5 |
Metabolic disease | Insulin sensitivity | 0.0007 | 5 |
Metabolic disease | Hyperinsulinism | 0.0007 | 4 |
Metabolic disease | Metabolic syndrome | 0.0330 | 5 |
Neurovascular disease | Stroke, ischemic | 0.0078 | 2 |
Neurovascular disease | Ischemic stroke | 0.0078 | 2 |
Neurovascular disease | Brain ischemia (biomarker_via_orthology) | 0.0218 | 4 |
Neurovascular disease | Cerebral infarction, left hemisphere | 0.0218 | 2 |
Neurovascular disease | Anterior choroidal artery infarction | 0.0218 | 2 |
Neurovascular disease | Cerebral infarction, right hemisphere | 0.0218 | 2 |
Neurovascular disease | Subcortical infarction | 0.0218 | 2 |
Neurovascular disease | Cerebral infarction | 0.0218 | 2 |
Cancer, hematological | Myeloid leukemia, chronic | 0.0008 | 4 |
Cancer, hematological | Acute myeloid leukemia, m1 | 0.0014 | 6 |
Cancer, hematological | Acute myeloid leukemia (aml-m2) | 0.0014 | 6 |
Cancer, hematological | Leukemia, myelocytic, acute | 0.0057 | 6 |
Cancer, hematological | Adult t-cell leukemia/lymphoma (is_marker_for) | 0.0181 | 2 |
Cancer, hematological | Acute promyelocytic leukemia | 0.0218 | 3 |
Cancer, hematological | Hematologic neoplasms | 0.0258 | 2 |
Sleeping disorder | Seasonal affective disorder | 0.0002 | 4 |
Sleeping disorder | Advanced sleep phase syndrome, familial | 0.0042 | 2 |
Sleeping disorder | Advanced sleep phase syndrome (is_implicated_in) | 0.0059 | 2 |
Drug | Use | No. of DEGs | FDR |
---|---|---|---|
Atorvastatin calcium | Anti-CVD, antihypercholesterolemic | 7 | 0.0069 |
Cerivastatin | Anti-CVD, antihypercholesterolemic | 3 | 0.0371 |
Simvastatin | Anti-CVD, antihypercholesterolemic | 14 | 0.0007 |
Abciximab | Antithrombotic | 4 | 0.0002 |
Losartan | Antihypertensive, angiotensin receptor blocker | 6 | 0.0190 |
Valsartan | Antihypertensive, angiotensin receptor blocker | 6 | 0.0051 |
Hydrochlorothiazide | Antihypertensive, diuretic | 2 | 0.0305 |
Isoproterenol | Anti-bradycardia, non-selective β-adrenergic receptor agonist | 24 | 1.043 × 10−6 |
Muraglitazar | Antidiabetic | 11 | 0.0037 |
Rosiglitazone | Antidiabetic | 27 | 3.669 × 10−5 |
Tesaglitazar | Antidiabetic | 12 | 0.0025 |
Troglitazone | Antidiabetic | 17 | 0.0305 |
Basiliximab | Immune suppressor, organ transplant | 4 | 0.0002 |
Muromonab | Immune suppressor, organ transplant | 4 | 0.0003 |
Efalizumab | Anti-auto immune disease, anti-psoriasis | 4 | 0.0001 |
Etanercept | Anti-auto immune disease, anti-psoriasis | 4 | 0.0002 |
Alefacept | Anti-auto immune disease, psoriasis | 4 | 0.0001 |
Rituximab | Anti-Rheumatoid arthritis | 4 | 0.0001 |
Adalimumab | Anti-rheumatoid arthritis, anti-Crohn’s disease, anti-psoriasis | 4 | 0.0001 |
Palivizumab | Antiviral | 4 | 9.213 × 10−5 |
Nevirapine | Anti-HIV | 5 | 0.0246 |
Daclizumab | Anti-MS | 4 | 0.0001 |
Natalizumab | Anti-MS | 4 | 0.0001 |
Apomab | Anticancer | 4 | 0.0048 |
Bevacizumab | Anticancer | 4 | 0.0001 |
Cetuximab | Anticancer | 4 | 0.0001 |
Ibritumomab | Anticancer | 4 | 0.0001 |
temozolomide | Anticancer, brain | 6 | 0.0414 |
Trastuzumab | Anticancer, breast | 4 | 0.0002 |
Alemtuzumab | Anticancer, leukemia | 4 | 0.0001 |
Dasatinib | Anticancer, leukemia | 12 | 0.0018 |
Doxorubicin | Anticancer, leukemia | 32 | 9.174 × 10−7 |
Gemtuzumab ozogamicin | Anticancer, leukemia | 4 | 0.0001 |
Tositumomab | Anti-non-Hodgkins lymphoma | 4 | 0.0001 |
Clodronate | Antiosteoporotic | 5 | 0.0039 |
Raloxifene Hydrochloride | Antiosteoporotic | 13 | 0.0305 |
Zoledronic acid | Antiosteoporotic | 19 | 0.0198 |
Melatonin | Sleeping aid | 11 | 5.279 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahimic, C.G.T.; Steczina, S.; Sebastian, A.; Hum, N.R.; Abegaz, M.; Terada, M.; Cimini, M.; Goukassian, D.A.; Schreurs, A.-S.; Hoban-Higgins, T.M.; et al. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes 2024, 15, 975. https://doi.org/10.3390/genes15080975
Tahimic CGT, Steczina S, Sebastian A, Hum NR, Abegaz M, Terada M, Cimini M, Goukassian DA, Schreurs A-S, Hoban-Higgins TM, et al. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes. 2024; 15(8):975. https://doi.org/10.3390/genes15080975
Chicago/Turabian StyleTahimic, Candice G. T., Sonette Steczina, Aimy Sebastian, Nicholas R. Hum, Metadel Abegaz, Masahiro Terada, Maria Cimini, David A. Goukassian, Ann-Sofie Schreurs, Tana M. Hoban-Higgins, and et al. 2024. "Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease" Genes 15, no. 8: 975. https://doi.org/10.3390/genes15080975
APA StyleTahimic, C. G. T., Steczina, S., Sebastian, A., Hum, N. R., Abegaz, M., Terada, M., Cimini, M., Goukassian, D. A., Schreurs, A. -S., Hoban-Higgins, T. M., Fuller, C. A., Loots, G. G., Globus, R. K., & Shirazi-Fard, Y. (2024). Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes, 15(8), 975. https://doi.org/10.3390/genes15080975