Exploring Candidate Gene Studies and Alexithymia: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy
2.2.1. Eligibility Criteria
Type of Studies
Exclusion Criteria
2.3. Evaluation of Methodological Quality
2.4. Data Extraction and Analysis
3. Results
3.1. Characteristics of the Studies
3.2. Genes in the Serotoninergic Pathway
3.3. Genes in Neurotransmitter Metabolism
3.4. Other Genetic Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franz, M.; Popp, K.; Schaefer, R.; Sitte, W.; Schneider, C.; Hardt, J.; Decker, O.; Braehler, E. Alexithymia in the German general population. Soc. Psychiatry Psychiatr. Epidemiol. 2008, 43, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.; Marella, P.; Rodriguez, C.; Glass Ii, D.; Goerlich, K.S. Alexithymia and Cutaneous Disease Morbidity: A Systematic Review. Dermatology 2022, 238, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Taylor, G.J.; Bagby, R.M. The 20-Item Toronto Alexithymia Scale. III. Reliability and factorial validity in a community population. J. Psychosom. Res. 2003, 55, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.D.; Sechrest, L.; Riedel, R. Sociodemographic correlates of alexithymia. Compr. Psychiatry 1998, 39, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Mattila, A.K.; Ahola, K.; Honkonen, T.; Salminen, J.K.; Huhtala, H.; Joukamaa, M. Alexithymia and occupational burnout are strongly associated in working population. J. Psychosom. Res. 2007, 62, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Joukamaa, M.; Taanila, A.; Miettunen, J.; Karvonen, J.T.; Koskinen, M.; Veijola, J. Epidemiology of alexithymia among adolescents. J. Psychosom. Res. 2007, 63, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Honkalampi, K.; Tolmunen, T.; Hintikka, J.; Rissanen, M.L.; Kylmä, J.; Laukkanen, E. The prevalence of alexithymia and its relationship with Youth Self-Report problem scales among Finnish adolescents. Compr. Psychiatry 2009, 50, 263–268. [Google Scholar] [CrossRef] [PubMed]
- van der Cruijsen, R.; Murphy, J.; Bird, G. Alexithymic traits can explain the association between puberty and symptoms of depression and anxiety in adolescent females. PLoS ONE 2019, 14, e0210519. [Google Scholar] [CrossRef] [PubMed]
- Demers, L.A.; Schreiner, M.W.; Hunt, R.H.; Mueller, B.A.; Klimes-Dougan, B.; Thomas, K.M.; Cullen, K.R. Alexithymia is associated with neural reactivity to masked emotional faces in adolescents who self-harm. J. Affect. Disord. 2019, 249, 253–261. [Google Scholar] [CrossRef]
- Meza-Concha, N.; Arancibia, M.; Salas, F.; Behar, R.; Salas, G.; Silva, H.; Escobar, R. Towards a neurobiological understanding of alexithymia. Medwave 2017, 17, e6960. [Google Scholar] [CrossRef]
- Gaggero, G.; Bizzego, A.; Dellantonio, S.; Pastore, L.; Lim, M.; Esposito, G. Clarifying the relationship between alexithymia and subjective interoception. PLoS ONE 2021, 16, e0261126. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.F.M.; Jones, E.J.H.; Crawley, D.; Charman, T.; Buitelaar, J.; Tillmann, J.; Murphy, D.G.; Loth, E. Alexithymia in autism: Cross-sectional and longitudinal associations with social-communication difficulties, anxiety and depression symptoms. Psychol. Med. 2022, 52, 1458–1470. [Google Scholar] [CrossRef]
- Quinto, R.M.; De Vincenzo, F.; Graceffa, D.; Bonifati, C.; Innamorati, M.; Iani, L. The Relationship between Alexithymia and Mental Health Is Fully Mediated by Anxiety and Depression in Patients with Psoriasis. Int. J. Environ. Res. Public Health 2022, 19, 3649. [Google Scholar] [CrossRef] [PubMed]
- Kekkonen, V.; Kraav, S.L.; Hintikka, J.; Kivimäki, P.; Kaarre, O.; Tolmunen, T. Stability of alexithymia is low from adolescence to young adulthood, and the consistency of alexithymia is associated with symptoms of depression and dissociation. J. Psychosom. Res. 2021, 150, 110629. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, S.J.; Kim, H.J.; Choi, H.R.; Lee, S.A. Factors associated with alexithymia in adults with epilepsy. Epilepsy Behav. EB 2021, 114, 107582. [Google Scholar] [CrossRef] [PubMed]
- Głowaczewska, A.; Szepietowski, J.C.; Matusiak, Ł. Prevalence and Associated Factors of Alexithymia in Patients with Hidradenitis Suppurativa: A Cross-sectional Study. Acta Derm.-Venereol. 2021, 101, adv00598. [Google Scholar] [CrossRef]
- Terock, J.; Hannemann, A.; Weihs, A.; Janowitz, D.; Grabe, H.J. Alexithymia is associated with reduced vitamin D levels, but not polymorphisms of the vitamin D binding-protein gene. Psychiatr. Genet. 2021, 31, 126–134. [Google Scholar] [CrossRef]
- Ikarashi, H.; Otsuru, N.; Yokota, H.; Nagasaka, K.; Igarashi, K.; Miyaguchi, S.; Onishi, H. Influence of Catechol-O-Methyltransferase Gene Polymorphism on the Correlation between Alexithymia and Hypervigilance to Pain. Int. J. Environ. Res. Public Health 2021, 18, 3265. [Google Scholar] [CrossRef]
- Valera, E.M.; Berenbaum, H. A twin study of alexithymia. Psychother. Psychosom. 2001, 70, 239–246. [Google Scholar] [CrossRef]
- Porcelli, P.; Cozzolongo, R.; Cariola, F.; Giannuzzi, V.; Lanzilotta, E.; Gentile, M.; Sonnante, G.; Leandro, G. Genetic Associations of Alexithymia in Predicting Interferon-Induced Depression in Chronic Hepatitis C. Psychopathology 2015, 48, 417–420. [Google Scholar] [CrossRef]
- Voigt, G.; Montag, C.; Markett, S.; Reuter, M. On the genetics of loss aversion: An interaction effect of BDNF Val66Met and DRD2/ANKK1 Taq1a. Behav. Neurosci. 2015, 129, 801–811. [Google Scholar] [CrossRef]
- Schneider-Hassloff, H.; Straube, B.; Jansen, A.; Nuscheler, B.; Wemken, G.; Witt, S.H.; Rietschel, M.; Kircher, T. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. NeuroImage 2016, 134, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.T.; Montag, C.; Markett, S.A.; Reuter, M. Interaction effect of functional variants of the BDNF and DRD2/ANKK1 gene is associated with alexithymia in healthy human subjects. Psychosom. Med. 2011, 73, 23–28. [Google Scholar] [CrossRef]
- Sacchinelli, E.; Piras, F.; Orfei, M.D.; Banaj, N.; Salani, F.; Ciaramella, A.; Caltagirone, C.; Spalletta, G.; Bossù, P. IL-18 Serum Levels and Variants of the Serotonin Transporter Gene Are Related to Awareness of Emotions in Healthy Subjects: A Preliminary Study. Neuroimmunomodulation 2018, 25, 129–137. [Google Scholar] [CrossRef]
- Terock, J.; Van der Auwera, S.; Janowitz, D.; Homuth, G.; Hannemann, A.; Schmidt, C.O.; Meyer Zu Schwabedissen, H.; Freyberger, H.J.; Grabe, H.J. Childhood Trauma and Functional Variants of 5-HTTLPR Are Independently Associated with Alexithymia in 5,283 Subjects from the General Population. Psychother. Psychosom. 2018, 87, 58–61. [Google Scholar] [CrossRef]
- Terock, J.; Weihs, A.; Teumer, A.; Klinger-König, J.; Janowitz, D.; Grabe, H.J. Associations and interactions of the serotonin receptor genes 5-HT1A, 5-HT2A, and childhood trauma with alexithymia in two independent general-population samples. Psychiatry Res. 2021, 298, 113783. [Google Scholar] [CrossRef]
- Mezzavilla, M.; Ulivi, S.; Bianca, M.L.; Carlino, D.; Gasparini, P.; Robino, A. Analysis of functional variants reveals new candidate genes associated with alexithymia. Psychiatry Res. 2015, 227, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Mizuno, T.; Kawano, Y.; Aoki, M.; Kanazawa, M.; Fukudo, S. Serotonin transporter gene promoter polymorphism and alexithymia. Neuropsychobiology 2012, 65, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, L.; Liu, J.; Guo, W.; Wang, Q.; Fang, P.; Yang, X.; Zhang, M.; Wang, C.; Gong, P. The rs6311 of serotonin receptor 2A (5-HT2A) gene is associated with alexithymia and mental health. J. Affect. Disord. 2020, 272, 277–282. [Google Scholar] [CrossRef]
- Koh, M.J.; Kim, W.; Kang, J.I.; Namkoong, K.; Kim, S.J. Lack of Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Alexithymia: Evidence from Patients with Obsessive-Compulsive Disorder. PLoS ONE 2015, 10, e0143168. [Google Scholar] [CrossRef]
- Gong, P.; Liu, J.; Li, S.; Zhou, X. Serotonin receptor gene (5-HT1A) modulates alexithymic characteristics and attachment orientation. Psychoneuroendocrinology 2014, 50, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Koh, M.J.; Kang, J.I.; Namkoong, K.; Lee, S.Y.; Kim, S.J. Association between the Catechol-O-Methyltransferase (COMT) Val158Met Polymorphism and Alexithymia in Patients with Obsessive-Compulsive Disorder. Yonsei Med. J. 2016, 57, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Ham, B.J.; Lee, M.S.; Lee, Y.M.; Kim, M.K.; Choi, M.J.; Oh, K.S.; Jung, H.Y.; Lyoo, I.K.; Choi, I.G. Association between the catechol O-methyltransferase Val108/158Met polymorphism and alexithymia. Neuropsychobiology 2005, 52, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Highland, K.B.; Herschl, L.C.; Klanecky, A.; McChargue, D.E. Biopsychosocial pathways to alcohol-related problems. Am. J. Addict. 2013, 22, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.; Hakim, F.T.; Islam Shovon, M.T.; Islam, M.M.; Islam, M.S.; Islam, M.A. The investigation of nonsynonymous SNPs of human SLC6A4 gene associated with depression: An in silico approach. Heliyon 2021, 7, e07815. [Google Scholar] [CrossRef] [PubMed]
- Hande, S.H.; Krishna, S.M.; Sahote, K.K.; Dev, N.; Erl, T.P.; Ramakrishna, K.; Ravidhran, R.; Das, R. Population genetic variation of SLC6A4 gene, associated with neurophysiological development. J. Genet. 2021, 100, 16. [Google Scholar] [CrossRef] [PubMed]
- Delli Colli, C.; Borgi, M.; Poggini, S.; Chiarotti, F.; Cirulli, F.; Penninx, B.; Benedetti, F.; Vai, B.; Branchi, I. Time moderates the interplay between 5-HTTLPR and stress on depression risk: Gene × environment interaction as a dynamic process. Transl. Psychiatry 2022, 12, 274. [Google Scholar] [CrossRef]
- Alvarez, B.D.; Morales, C.A.; Amodeo, D.A. Impact of specific serotonin receptor modulation on behavioral flexibility. Pharmacol. Biochem. Behav. 2021, 209, 173243. [Google Scholar] [CrossRef] [PubMed]
- Niewczas, M.; Grzywacz, A.; Leźnicka, K.; Chmielowiec, K.; Chmielowiec, J.; Maciejewska-Skrendo, A.; Ruzbarsky, P.; Masiak, J.; Czarny, W.; Cięszczyk, P. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among MMA Athletes. Genes 2021, 12, 1217. [Google Scholar] [CrossRef]
- Grzywacz, A.; Chmielowiec, J.; Chmielowiec, K.; Mroczek, B.; Masiak, J.; Suchanecka, A.; Sipak-Szmigiel, O.; Szumilas, K.; Trybek, G. The Ankyrin Repeat and Kinase Domain Containing 1 Gene Polymorphism (ANKK1 Taq1A) and Personality Traits in Addicted Subjects. Int. J. Environ. Res. Public Health 2019, 16, 2687. [Google Scholar] [CrossRef]
- Palumbo, S.; Mariotti, V.; Vellucci, S.; Antonelli, K.; Anderson, N.; Harenski, C.; Pietrini, P.; Kiehl, K.A.; Pellegrini, S. ANKK1 and TH gene variants in combination with paternal maltreatment increase susceptibility to both cognitive and attentive impulsivity. Front. Psychiatry 2022, 13, 868804. [Google Scholar] [CrossRef] [PubMed]
- Lyon, K.A.; Rood, B.D.; Wu, L.; Senft, R.A.; Goodrich, L.V.; Dymecki, S.M. Sex-Specific Role for Dopamine Receptor D2 in Dorsal Raphe Serotonergic Neuron Modulation of Defensive Acoustic Startle and Dominance Behavior. eNeuro 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Bralten, J.; Mota, N.R.; Klemann, C.; De Witte, W.; Laing, E.; Collier, D.A.; de Kluiver, H.; Bauduin, S.; Arango, C.; Ayuso-Mateos, J.L.; et al. Genetic underpinnings of sociability in the general population. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2021, 46, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, M.; Sergi, M.R.; Konstantinidou, F.; Franzago, M.; Pesce, M.; Fratta, I.; Grilli, A.; Stuppia, L.; Picconi, L.; Saggino, A.; et al. Association of COMT, BDNF and 5-HTT functional polymorphisms with personality characteristics. Front. Biosci. Landmark Ed. 2021, 26, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Rösel, F.; Dobler, H.; Streb, J.; Dudeck, M. Childhood Trauma, the Combination of MAO-A and COMT Genetic Polymorphisms and the Joy of Being Aggressive in Forensic Psychiatric Patients. Brain Sci. 2021, 11, 1008. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, K.; Rhein, M.; Deest, M.; Buchholz, V.; Bleich, S.; Lichtinghagen, R.; Vyssoki, B.; Frieling, H.; Muschler, M.; Proskynitopoulos, P.J.; et al. Dysregulated Methylation Patterns in Exon IV of the Brain-Derived Neurotrophic Factor (BDNF) Gene in Nicotine Dependence and Changes in BDNF Plasma Levels During Smoking Cessation. Front. Psychiatry 2022, 13, 897801. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrillo, A.; Mustieles, V.; D‘Cruz, S.C.; Legoff, L.; Gil, F.; Olmedo, P.; Reina-Pérez, I.; Mundo, A.; Molina, M.; Smagulova, F.; et al. Exploring the relationship between metal exposure, BDNF, and behavior in adolescent males. Int. J. Hyg. Environ. Health 2022, 239, 113877. [Google Scholar] [CrossRef] [PubMed]
- Tsuneoka, Y.; Yoshihara, C.; Ohnishi, R.; Yoshida, S.; Miyazawa, E.; Yamada, M.; Horiguchi, K.; Young, W.S.; Nishimori, K.; Kato, T.; et al. Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. eNeuro 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Spencer, H.; Parianen Lesemann, F.H.; Kraaijenvanger, E.J.; Overbeek, G.; Montoya, E.R.; Branje, S.; Boks, M.P.M.; Bos, P.A. Oxytocin system gene methylation is associated with empathic responses towards children. Psychoneuroendocrinology 2022, 137, 105629. [Google Scholar] [CrossRef]
- Kim, W.S.; Weickert, C.S.; Garner, B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J. Neurochem. 2008, 104, 1145–1166. [Google Scholar] [CrossRef]
- Oda, K.; Arakawa, H.; Tanaka, T.; Matsuda, K.; Tanikawa, C.; Mori, T.; Nishimori, H.; Tamai, K.; Tokino, T.; Nakamura, Y.; et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 2000, 102, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Zeidán-Chuliá, F.; Rybarczyk-Filho, J.L.; Salmina, A.B.; de Oliveira, B.H.; Noda, M.; Moreira, J.C. Exploring the multifactorial nature of autism through computational systems biology: Calcium and the Rho GTPase RAC1 under the spotlight. Neuromol. Med. 2013, 15, 364–383. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Komiya, M.; Sone, K.; Hirose, E.; Gotoh, N.; Morii, H.; Ohta, Y.; Mori, N. Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol. Cell. Biol. 2002, 22, 8721–8734. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, H.; Hattori, M.; Kato, T.; Tatsumi, M.; Sakai, T.; Sasaki, T.; Hirose, T.; Nanko, S. Serotonin transporter gene polymorphisms: Ethnic difference and possible association with bipolar affective disorder. Mol. Psychiatry 1997, 2, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Michely, J.; Eldar, E.; Martin, I.M.; Dolan, R.J. A mechanistic account of serotonin’s impact on mood. Nat. Commun. 2020, 11, 2335. [Google Scholar] [CrossRef] [PubMed]
- Sand, P.G. The serotonin 1A receptor gene in mood disorders: A tale of missed opportunities. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Iñiguez, I.; Panduro, A.; Ramos-Lopez, O.; Villaseñor-Bayardo, S.J.; Roman, S. DRD2/ANKK1 TaqI A1 polymorphism associates with overconsumption of unhealthy foods and biochemical abnormalities in a Mexican population. Eat. Weight Disord. EWD 2019, 24, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Reuter, M.; Felten, A.; Penz, S.; Mainzer, A.; Markett, S.; Montag, C. The influence of dopaminergic gene variants on decision making in the ultimatum game. Front. Hum. Neurosci. 2013, 7, 242. [Google Scholar] [CrossRef]
- Tõugu, P.; Tulviste, T.; Veidebaum, T.; Harro, J. Schoolchildren’s autobiographical memory: COMT gene Val(158)Met polymorphism effects on emotional content and quality of first memories. Cogn. Process. 2022, 23, 109–120. [Google Scholar] [CrossRef]
- Drabant, E.M.; Hariri, A.R.; Meyer-Lindenberg, A.; Munoz, K.E.; Mattay, V.S.; Kolachana, B.S.; Egan, M.F.; Weinberger, D.R. Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch. Gen. Psychiatry 2006, 63, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Hill, B.; Sims, N.; Heck, A.; Negron, M.; Lusk, C.; Galindo, C.L. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen. Res. 2023, 18, 102–106. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, J.; Fan, Y.; Leng, J.; Wang, Q.; Yang, C.; Zhang, R.; Guo, W.; Zhang, J.; Gong, P. The OXTR rs53576 impacts moral permissibility of attempted but failed harms in populations of students and prisoners. Soc. Cogn. Affect. Neurosci. 2022, 17, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Inman, C.S.; Bijanki, K.R.; Bass, D.I.; Gross, R.E.; Hamann, S.; Willie, J.T. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia 2020, 145, 106722. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Matsuura, T.; Xue, M.; Chen, Q.Y.; Liu, R.H.; Lu, J.S.; Shi, W.; Fan, K.; Zhou, Z.; Miao, Z.; et al. Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation. Cell Rep. 2021, 36, 109411. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. MetaArXiv 2020. [Google Scholar] [CrossRef]
First Author | Country | Sample Size | Gene | Cytogenetic Band | Variant | General Outcome | Gender Outcome | NOS Score |
---|---|---|---|---|---|---|---|---|
Kano M., 2012 [28] | Japan | 304 | SLC6A4 | 17q11.2 | HTTLPR | Higher TAS-20 score with L/L genotype (p = 0.017). | Higher DIF domain score with L/L genotype (p = 0.001) in females. | 7 |
Li X., 2020 [29] | China | 1302 | HTR2A | 13q14.2 | rs6311, rs6313 | Higher TAS-20 score with G allele of rs6311 polymorphism (p = 0.014). | Higher TAS-20 score in males; after including gender as a covariate, rs6311 genotypes (p = 0.026) remained significantly different. | 8 |
Mezzavilla M., 2015 [27] | Italy | 585 | ABCB4, TP53AIP1, ARHGAP32, TMEM88B | 7q21.12, 11q24.3, 11q24.3, 1p36.33 | rs45575636, rs35942033, rs35287114, rs144957058 | Analysis of functional variants showed that these 4 polymorphisms are associated with alexithymia (p = 2.6 × 10−8, p = 3.2 × 10−7, p = 3.2 × 10−7, p = 1.0 × 10−6). | The average TAS-20 score in females was 46.1; in males, it was 45.3. | 8 |
Terock J., 2021 [26] | Germany | 6267 | HTR2A, HTR1A | 13q14.2, 5q12.3 | rs6295, rs6313, rs6311 | No association between polymorphisms in this study and alexithymia. | The average TAS-20 scores were 52.13 in males and 50.69 in females. | 9 |
Koh MJ, 2016 [32] | Korean | 244 | COMT | 22q11.21 | Val158Met | Higher TAS-20 score with Val/Val genotype (p = 0.018). | No association. | 8 |
Gong P., 2015 [32] | china | 504 | HTR1A | 5q12.3 | rs6295 (C-1019G) | Higher TAS-20 score with CG/GG genotype (p = 0.017) of rs6295. | Not reported. | 6 |
Highland, K.B., 2011 [34] | USA | 297 | DRD2/ANKK1 | 11q23.2 | TaqI A | Higher TAS-20 score with A1+ allele (p < 0.05). | Not reported. | 7 |
Terock J., 2018 [25] | Germany | 5283 | SLC6A4 | 17q11.2 | 5-HTTLPR | Lower TAS-20 scores with L-allele (p = 0.022) of 5-HTTLPR. | Not reported. | 9 |
Sacchinelli E., 2018 [24] | Italy | 115 | SLC6A4 | 17q11.2 | HTTLPR | No association between SCL6A4 and TAS-20 total score. | Higher DIF domain scores with L/L genotype (p = 0.036) in males. | 7 |
Terock J., 2021 [17] | Germany | 5783 | VDBP (GC) | 4q13.3 | rs4588, rs7041 | No association between rs4588 and rs7041 and alexithymia. | Not reported. | 9 |
Koh M.J., 2016 [30] | Korea | 355 | OXTR | 3p25.3 | rs237885, rs237887, rs2268490, rs4686301, rs2254298, rs13316193, rs53576, rs2268498 | No association between polymorphisms in this study and alexithymia. | Not reported. | 6 |
Walter N.T., 2011 [23] | Germany | 664 | BDNF, DRD2/ANKK1 | 11p14.1, 11p14.1 | Val66Met, TaqI A | Higher TAS-20 score with 66Met of Val66Met and A1 allele of DRD2/ANKK1 (p < 0.02). | Significant effect of gender on the TAS-20 score (p = 0.015), indicating slightly higher TAS-20 scores in men than in women. | 7 |
Ikarashi H., 2021 [18] | Japan | 80 | COMT | 22q11.21 | Val158Met | Higher DIF domain scores with COMT met carriers (p = 0.001). | Not reported. | 7 |
Schneider-Hassloff H., 2016 [22] | Germany | 195 | OXTR | 3p25.3 | rs53576 | No association of rs5376 and alexithymia. | No significant sex-specific genotype-by-CAS interaction was observed | 7 |
Voigt G., 2015 [21] | Germany | 144 | BDNF, DRD2/ANKK1 | 11p14.1, 11p14.1 | Val66Met, TaqI A | No association of COMT Val66Met, or TaqI A and alexithymia. | Not reported. | 6 |
Ham B.J., 2005 [33] | Korea | 109 | COMT 5-HTTLPR | 22q11.21 | Val108/158Met HTTLPR | Carriers of Val/Val genotype (p = 0.019) of COMT were associated with alexithymia. For HTTLPR, no association was observed. | Not associated. | 7 |
Porcelli P., 2015 [20] | Italy | 130 | HTR1A, SLC6A4 | 5q12.3, 17q11.2 | rs6295, HTTLPR | Homozygosity for HTR1A-G and 5-HTTLPR long alleles was associated with significantly (p < 0.01) higher TAS-20 scores. | Not reported. | 8 |
Sample size | 22,361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Díaz, Y.; Genis-Mendoza, A.D.; González-Castro, T.B.; Fresán, A.; Tovilla-Zárate, C.A.; López-Narváez, M.L.; Juárez-Rojop, I.E.; Nicolini, H. Exploring Candidate Gene Studies and Alexithymia: A Systematic Review. Genes 2024, 15, 1025. https://doi.org/10.3390/genes15081025
Hernández-Díaz Y, Genis-Mendoza AD, González-Castro TB, Fresán A, Tovilla-Zárate CA, López-Narváez ML, Juárez-Rojop IE, Nicolini H. Exploring Candidate Gene Studies and Alexithymia: A Systematic Review. Genes. 2024; 15(8):1025. https://doi.org/10.3390/genes15081025
Chicago/Turabian StyleHernández-Díaz, Yazmín, Alma Delia Genis-Mendoza, Thelma Beatriz González-Castro, Ana Fresán, Carlos Alfonso Tovilla-Zárate, María Lilia López-Narváez, Isela Esther Juárez-Rojop, and Humberto Nicolini. 2024. "Exploring Candidate Gene Studies and Alexithymia: A Systematic Review" Genes 15, no. 8: 1025. https://doi.org/10.3390/genes15081025
APA StyleHernández-Díaz, Y., Genis-Mendoza, A. D., González-Castro, T. B., Fresán, A., Tovilla-Zárate, C. A., López-Narváez, M. L., Juárez-Rojop, I. E., & Nicolini, H. (2024). Exploring Candidate Gene Studies and Alexithymia: A Systematic Review. Genes, 15(8), 1025. https://doi.org/10.3390/genes15081025