The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells
Abstract
:1. Introduction
Species | Cell Type | Method(s) of Cryopreservation | Main Cryopreservation Success Indicators | Reference |
---|---|---|---|---|
Chicken | Primordial germ cells | Slow freezing | Gonadal colonization and sperm differentiation post-transplantation | [27] |
Drosophila | Primordial germ cells | vitrification | Production of donor-derived gametes | [28] |
Rats | Spermatogonial stem cells | Slow freezing | Production of all germ cell types after long-term cryopreservation | [29] |
Fish | Germline stem cells | slow freezing | Gonadal colonization post-transplantation | [30] |
Human | Induced pluripotent stem cells | slow freezing | Retention of pluripotency and differentiation capacity post-cryopreservation | [31] |
Chicken | Primordial germ cells | Slow freezing | Successful migration into gonads | [32] |
Horse | Spermatogonial stem cells | vitrification/slow-freezing/fast-freezing | Metabolic activity and spermatogonial stem cell’s protein expression comparable to fresh cells | [33] |
Chicken | Primordial germ cells | stored at −150 °C (vitrification) | Viable gametes and offspring produced post-transplantation | [34] |
Bovine | Spermatogonial stem cells | Slow freezing | Colonization and proliferation in recipient testes post-transplantation | [35] |
Human | Embryonic stem cells | vitrification/slow-freezing | Maintenance of pluripotency | [36] |
Rhesus macaques | Spermatogonial stem cells | slow freezing | Retention of engraftment potential post-cryopreservation | [37] |
2. Materials and Methods
2.1. Ethical Considerations
2.2. Fertilized Eggs and Incubation
2.3. Derivation of Embryonic Blood Containing cPGCs
2.4. Freezing and Thawing of Cells
2.5. Sex Determination
2.6. Quantitative Reverse Transcription PCR (RT-qPCR)
2.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tagami, T.; Miyahara, D.; Nakamura, Y. Avian Primordial Germ Cells. In Avian Reproduction: From Behavior to Molecules; Sasanami, T., Ed.; Springer: Singapore, 2017; pp. 1–18. [Google Scholar] [CrossRef]
- Ibrahim, M.; Stadnicka, K. The science of genetically modified poultry. Phys. Sci. Rev. 2023, 9, 825–842. [Google Scholar] [CrossRef]
- Ichikawa, K.; Horiuchi, H. Fate Decisions of Chicken Primordial Germ Cells (PGCs): Development, Integrity, Sex Determination, and Self-Renewal Mechanisms. Genes 2023, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Altgilbers, S.; Klein, S.; Dierks, C.; Weigend, S.; Kues, W.A. Cultivation and characterization of primordial germ cells from blue layer hybrids (Araucana crossbreeds) and generation of germline chimeric chickens. Sci. Rep. 2021, 11, 12923. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lin, S.P.; Chang, Y.Y.; Chang, W.P.; Wei, L.Y.; Liu, H.C.; Huang, J.F.; Pain, B.; Wu, S.C. In vitro culture and characterization of duck primordial germ cells. Poult. Sci. 2019, 98, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, M.E.; Gheyas, A.A.; Mason, A.S.; Nandi, S.; Taylor, L.; Sherman, A.; Smith, J.; Burt, D.W.; Hawken, R.; McGrew, M.J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc. Natl. Acad. Sci. USA 2019, 116, 20930–20937. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y. Germ cells and transgenesis in chickens. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Qiu, L.; Guo, Q.; Chen, Y.; Zhang, X.; Chen, B.; Zhang, Y.; Chang, G. Long-term in vitro culture and preliminary establishment of chicken primordial germ cell lines. PLoS ONE 2018, 13, e0196459. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y. Poultry genetic resource conservation using primordial germ cells. J. Reprod. Dev. 2016, 62, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Mathan; Zaib, G.; Jin, K.; Zuo, Q.; Habib, M.; Zhang, Y.; Li, B. Formation, Application, and Significance of Chicken Primordial Germ Cells: A Review. Animals 2023, 13, 1096. [Google Scholar] [CrossRef]
- Motono, M.; Ohashi, T.; Nishijima, K.; Iijima, S. Analysis of chicken primordial germ cells. Cytotechnology 2008, 57, 199–205. [Google Scholar] [CrossRef]
- Minematsu, T.; Harumi, T.; Naito, M. Germ cell-specific expression of GFP gene induced by chicken vasa homologue (Cvh) promoter in early chicken embryos. Mol. Reprod. Dev. 2008, 75, 1515–1522. [Google Scholar] [CrossRef]
- D’Costa, S.; Petitte, J.N. Characterization of stage-specific embryonic antigen-1 (SSEA-1) expression during early development of the turkey embryo. Int. J. Dev. Biol. 1999, 43, 349–356. [Google Scholar] [PubMed]
- Gustafson, E.A.; Wessel, G.M. Vasa genes: Emerging roles in the germ line and in multipotent cells. Bioessays 2010, 32, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Spike, C.; Meyer, N.; Racen, E.; Orsborn, A.; Kirchner, J.; Kuznicki, K.; Yee, C.; Bennett, K.; Strome, S. Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Genetics 2008, 178, 1973–1987. [Google Scholar] [CrossRef]
- Illmensee, K.; Mahowald, A.P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl. Acad. Sci. USA 1974, 71, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Parvinen, M. The chromatoid body in spermatogenesis. Int. J. Androl. 2005, 28, 189–201. [Google Scholar] [CrossRef]
- Medrano, J.V.; Ramathal, C.; Nguyen, H.N.; Simon, C.; Reijo Pera, R.A. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells 2012, 30, 441–451. [Google Scholar] [CrossRef]
- Lavial, F.; Acloque, H.; Bachelard, E.; Nieto, M.A.; Samarut, J.; Pain, B. Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev. Biol. 2009, 330, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Choi, H.J.; Lee, H.G.; Lim, J.; Ono, T.; Han, J.Y. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chicken. Stem Cells Dev. 2016, 25, 68–79. [Google Scholar] [CrossRef]
- Choi, H.J.; Jin, S.D.; Rengaraj, D.; Kim, J.H.; Pain, B.; Han, J.Y. Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. J. Anim. Sci. Biotechnol. 2021, 12, 40. [Google Scholar] [CrossRef]
- Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003, 113, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, S.; Jiang, H.; Hua, Y.; Yin, B.; Huang, X.; Man, Q.; Wang, H.; Zhu, G. Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev. Rep. 2022, 18, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Doddamani, D.; Woodcock, M.; Taylor, L.; Nandi, S.; McTeir, L.; Davey, M.G.; Smith, J.; McGrew, M.J. The Transcriptome of Chicken Migratory Primordial Germ Cells Reveals Intrinsic Sex Differences and Expression of Hallmark Germ Cell Genes. Cells 2023, 12, 1151. [Google Scholar] [CrossRef] [PubMed]
- Carstea, A.C.; Pirity, M.K.; Dinnyes, A. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background. World J. Stem Cells 2009, 1, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, A.; Kasperczyk, K.; Sławińska, A.; Bednarczyk, M. The breed of the month: Green-legged Partridgelike. Old Nativ. Polish Hen. Glob. Newsl. 2009, 9, 12–15. [Google Scholar]
- Hamai, N.; Koide, C.; Tansho, Y.; Ooka, Y.; Hirano, M.; Fatira, E.; Tsudzuki, M.; Nakamura, Y. Development of cryopreservation media for the slow-freezing of cultured primordial germ cells in chicken. J. Reprod. Dev. 2023, 69, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Asaoka, M.; Sakamaki, Y.; Fukumoto, T.; Tanaka, D.; Kobayashi, S.; Takano-Shimizu-Kouno, T. Primordial Germ Cell Cryopreservation and Revival of Drosophila Strains. JoVE 2023, 202, e65985. [Google Scholar] [CrossRef] [PubMed]
- Whelan, E.C.; Yang, F.; Avarbock, M.R.; Sullivan, M.C.; Beiting, D.P.; Brinster, R.L. Reestablishment of spermatogenesis after more than 20 years of cryopreservation of rat spermatogonial stem cells reveals an important impact in differentiation capacity. PLoS Biol. 2022, 20, e3001618. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Zhou, C.; Yue, H.; Wu, M.; Ruan, R.; Du, H.; Li, C.; Wei, Q. Cryopreservation of germline stem cells in American paddlefish (Polyodon spathula). Anim. Reprod. Sci. 2021, 224, 106667. [Google Scholar] [CrossRef]
- Jiang, B.; Li, W.; Stewart, S.; Ou, W.; Liu, B.; Comizzoli, P.; He, X. Sand-mediated ice seeding enables serum-free low-cryoprotectant cryopreservation of human induced pluripotent stem cells. Bioact. Mater. 2021, 6, 4377–4388. [Google Scholar] [CrossRef]
- Lázár, B.; Molnár, M.; Sztán, N.; Végi, B.; Drobnyák, Á.; Tóth, R.; Tokodyné Szabadi, N.; McGrew, M.J.; Gócza, E.; Patakiné Várkonyi, E. Successful cryopreservation and regeneration of a partridge colored Hungarian native chicken breed using primordial germ cells. Poult. Sci. 2021, 100, 101207. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.M.J.; Avelar, G.F.; Lacerda, S.M.S.N.; Figueiredo, A.F.A.; Tavares, A.O.; Rezende-Neto, J.V.; Martins, F.G.P.; França, L.R. Horse spermatogonial stem cell cryopreservation: Feasible protocols and potential biotechnological applications. Cell Tissue Res. 2017, 370, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Whyte, J.; Taylor, L.; Sherman, A.; Nair, V.; Kaiser, P.; McGrew, M.J. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult. Sci. 2016, 95, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-J.; Lee, Y.-A.; Kim, B.-J.; Kim, Y.-H.; Kim, B.-G.; Kang, H.-G.; Jung, S.-E.; Choi, S.-H.; Schmidt, J.A.; Ryu, B.-Y. Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 2015, 70, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Beier, A.F.J.; Schulz, J.C.; Dörr, D.; Katsen-Globa, A.; Sachinidis, A.; Hescheler, J.; Zimmermann, H. Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 2011, 63, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.P.; Sukhwani, M.; Lin, C.-C.; Sheng, Y.; Tomko, J.; Rodriguez, M.; Shuttleworth, J.J.; McFarland, D.; Hobbs, R.M.; Pandolfi, P.P.; et al. Characterization, Cryopreservation, and Ablation of Spermatogonial Stem Cells in Adult Rhesus Macaques. Stem Cells 2009, 25, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.; Glover, J.D.; Woodcock, M.; Brzeszczynska, J.; Taylor, L.; Sherman, A.; Kaiser, P.; McGrew, M.J. FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal. Stem Cell Rep. 2015, 5, 1171–1182. [Google Scholar] [CrossRef]
- Clinton, M.; Haines, L.; Belloir, B.; McBride, D. Sexing chick embryos: A rapid and simple protocol. Br. Poult. Sci. 2001, 42, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Macdonald, J.; Glover, J.D.; Taylor, L.; Sang, H.M.; McGrew, M.J. Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells. PLoS ONE 2010, 5, e15518. [Google Scholar] [CrossRef]
- Han, J.Y.; Lee, H.G.; Park, Y.H.; Hwang, Y.S.; Kim, S.K.; Rengaraj, D.; Cho, B.W.; Lim, J.M. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J. Anim. Sci. Biotechnol. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Tonus, C.; Cloquette, K.; Ectors, F.; Piret, J.; Gillet, L.; Antoine, N.; Desmecht, D.; Vanderplasschen, A.; Waroux, O.; Grobet, L. Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reprod. Fertil. Dev. 2016, 28, 628–639. [Google Scholar] [CrossRef]
- Chatterjee, A.; Saha, D.; Niemann, H.; Gryshkov, O.; Glasmacher, B.; Hofmann, N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2017, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.K.; Park, S.; Ha, J.J.; Kim, D.H.; Huang, H.; Park, S.J.; Lee, M.H.; Ryoo, Z.Y.; Kim, S.H.; Kim, M.O. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020, 22, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Riesco, M.F.; Robles, V. Cryopreservation Causes Genetic and Epigenetic Changes in Zebrafish Genital Ridges. PLoS ONE 2013, 8, e67614. [Google Scholar] [CrossRef] [PubMed]
- Katkov, I.I.; Kim, M.S.; Bajpai, R.; Altman, Y.S.; Mercola, M.; Loring, J.F.; Terskikh, A.V.; Snyder, E.Y.; Levine, F. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 2006, 53, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.; Fong, C.Y.; Tan, S.; Chan, W.K.; Bongso, A. An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 2004, 22, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef] [PubMed]
- Iwatani, M.; Ikegami, K.; Kremenska, Y.; Hattori, N.; Tanaka, S.; Yagi, S.; Shiota, K. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 2006, 24, 2549–2556. [Google Scholar] [CrossRef]
- Yokochi, T.; Robertson, K.D. Dimethyl sulfoxide stimulates the catalytic activity of de novo DNA methyltransferase 3a (Dnmt3a) in vitro. Bioorganic Chem. 2004, 32, 234–243. [Google Scholar] [CrossRef]
- Kawai, K.; Li, Y.-S.; Song, M.-F.; Kasai, H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic Med. Chem. Lett. 2010, 20, 260–265. [Google Scholar] [CrossRef] [PubMed]
Gene Abbreviation | Gene Name | Primer Sequences | Amplicon Size (bp) | Source | |
---|---|---|---|---|---|
OCT4 | Octamer-binding transcription factor 4 | F | TCAATGAGGCAGAGAACACG | 144 | [41] |
R | TCACACATTTGCGGAAGAAG | ||||
CVH (DDX4-VASA) | Chicken Vasa homologue (DEAD-Box Helicase 4) | F | AAGAGGAGCAGTTGGAGGTC | 210 | This study |
R | AGTAATGGTGCTGGAGGGTC | ||||
DAZL | Deleted In Azoospermia Like | F | TTCGTCAACAACCTGCCAAG | 144 | This study |
R | TTCACCTCCTTCACAGTACCA | ||||
NANOG | Nanog Homeobox | F | CAGCAGACCTCTCCTTGACC | 149 | [42] |
R | AAAAGTGGGGCGGTGAGATG | ||||
SSEA-1 | Stage-specific embryonic antigen-1 | F | GCCACCTACCTGAAGTTCCT | 104 | This study |
R | TGCTCATCCCAGAAAGACGT | ||||
GAPDH | Glyceraldehyde-3-Phosphate Dehydrogenase | F | ACACAGAAGACGGTGGATGG | 193 | [42] |
R | GGCAGGTCAGGTCAACAACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.; Grochowska, E.; Lázár, B.; Várkonyi, E.; Bednarczyk, M.; Stadnicka, K. The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells. Genes 2024, 15, 624. https://doi.org/10.3390/genes15050624
Ibrahim M, Grochowska E, Lázár B, Várkonyi E, Bednarczyk M, Stadnicka K. The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells. Genes. 2024; 15(5):624. https://doi.org/10.3390/genes15050624
Chicago/Turabian StyleIbrahim, Mariam, Ewa Grochowska, Bence Lázár, Eszter Várkonyi, Marek Bednarczyk, and Katarzyna Stadnicka. 2024. "The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells" Genes 15, no. 5: 624. https://doi.org/10.3390/genes15050624
APA StyleIbrahim, M., Grochowska, E., Lázár, B., Várkonyi, E., Bednarczyk, M., & Stadnicka, K. (2024). The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells. Genes, 15(5), 624. https://doi.org/10.3390/genes15050624