SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Patient Selection
2.3. Sampling and DNA Extraction
2.4. DNA Methylation Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S. Molecular landscape of head and neck cancer and implications for therapy. Ann. Transl. Med. 2021, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Gillison, M.L. Human papillomavirus in head and neck cancer: Its role in pathogenesis and clinical implications. Clin. Cancer Res. 2009, 15, 6758–6762. [Google Scholar] [CrossRef]
- Burkitt, K. Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer. Cancers 2023, 15, 4685. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Sougnez, C.; Lichtenstein, L.; Cibulskis, K.; Lander, E.; Gabriel, S.B.; Getz, G.; Ally, A.; Balasundaram, M.; Birol, I. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 7536. [Google Scholar]
- Lakshminarasimhan, R.; Liang, G. The role of DNA methylation in cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar]
- Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019, 10, 1150. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Camuzi, D.; de Almeida Simão, T.; Dias, F.; Pinto, L.F.R.; Soares-Lima, S.C. Head and neck cancers are not alike when tarred with the same brush: An epigenetic perspective from the cancerization field to prognosis. Cancers 2021, 13, 5630. [Google Scholar] [CrossRef] [PubMed]
- Liouta, G.; Adamaki, M.; Tsintarakis, A.; Zoumpourlis, P.; Liouta, A.; Agelaki, S.; Zoumpourlis, V. DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int. J. Mol. Sci. 2023, 24, 2996. [Google Scholar] [CrossRef] [PubMed]
- Karpf, A.R. Epigenetic alterations in oncogenesis preface. Adv. Exp. Med. Biol. 2013, 754, v–vii. [Google Scholar]
- Noorlag, R.; van Kempen, P.M.W.; Moelans, C.B.; de Jong, R.; Blok, L.E.R.; Koole, R.; Grolman, W.; van Diest, P.J.; van Es, R.J.J.; Willems, S.M. Promoter hypermethylation using 24-gene array in early head and neck cancer: Better outcome in oral than in oropharyngeal cancer. Epigenetics 2014, 9, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Dynan, W.S.; Tjian, R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 1983, 35, 79–87. [Google Scholar] [CrossRef]
- Black, A.R.; Black, J.D.; Azizkhan-Clifford, J. Sp1 and Krüppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell. Physiol. 2001, 188, 143–160. [Google Scholar] [CrossRef]
- Gilmour, J.; Assi, S.A.; Jaegle, U.; Kulu, D.; van de Werken, H.; Clarke, D.; Westhead, D.R.; Philipsen, S.; Bonifer, C. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification. Development 2014, 141, 2391–2401. [Google Scholar] [CrossRef]
- Beishline, K.; Azizkhan-Clifford, J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015, 282, 224–258. [Google Scholar] [CrossRef] [PubMed]
- Asokan, G.S.; Jeelani, S.; Gnanasundaram, N. Promoter hypermethylation profile of tumour suppressor genes in oral leukoplakia and oral squamous cell carcinoma. J. Clin. Diagn. Res. 2014, 8, ZC09–ZC12. [Google Scholar] [CrossRef]
- Jiang, N.Y.; Woda, B.A.; Banner, B.F.; Whalen, G.F.; Dresser, K.A.; Lu, D. Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1648–1652. [Google Scholar] [CrossRef]
- Guan, H.; Cai, J.; Zhang, N.; Wu, J.; Yuan, J.; Li, J.; Li, M. Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int. J. Cancer 2012, 130, 593–601. [Google Scholar] [CrossRef]
- Wang, L.; Wei, D.; Huang, S.; Peng, Z.; Le, X.; Wu, T.T.; Yao, J.; Ajani, J.; Xie, K. Transcription Factor Sp1 Expression Is a Significant Predictor of Survival in Human Gastric Cancer. Clin. Cancer Res. 2003, 9, 6371–6380. [Google Scholar]
- Wang, X.B.; Peng, W.Q.; Yi, Z.J.; Zhu, S.L.; Gan, Q.H. Expression and prognostic value of transcriptional factor sp1 in breast cancer. Ai Zheng 2007, 26, 9. [Google Scholar]
- Liu, X.B.; Wang, J.; Li, K.; Fan, X.N. Sp1 promotes cell migration and invasion in oral squamous cell carcinoma by upregulating Annexin A2 transcription. Mol. Cell. Probes 2019, 46, 101417. [Google Scholar] [CrossRef]
- Jia, L.F.; Huang, Y.P.; Zheng, Y.F.; Lyu, M.Y.; Wei, S.B.; Meng, Z.; Gan, Y.H. MiR-29b suppresses proliferation, migration, and invasion of tongue squamous cell carcinoma through PTEN-AKT signaling pathway by targeting Sp1. Oral Oncol. 2014, 50, 1062–1071. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Bang, W.; Shin, J.C.; Park, S.M.; Cho, J.J.; Choi, Y.H.; Seo, K.S.; Choi, N.J.; Shim, J.H.; Chae, J.I. Downregulation of Sp1 is involved in β-lapachone-induced cell cycle arrest and apoptosis in oral squamous cell carcinoma. Int. J. Oncol. 2015, 46, 2606–2612. [Google Scholar] [CrossRef]
- Sun, L.; Liang, J.; Wang, Q.; Li, Z.; Du, Y.; Xu, X. MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Prolif. 2016, 49, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Lohavanichbutr, P.; Houck, J.; Fan, W.; Yueh, B.; Mendez, E.; Futran, N.; Doody, D.R.; Upton, M.P.; Farwell, D.G.; Schwartz, S.M.; et al. Genomewide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer potential implications for treatment choices. Arch. Otolaryngol.-Head Neck Surg. 2009, 135, 180–188. [Google Scholar] [CrossRef]
- Lechner, M.; Frampton, G.M.; Fenton, T.; Feber, A.; Palmer, G.; Jay, A.; Pillay, N.; Forster, M.; Cronin, M.T.; Lipson, D.; et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med. 2013, 5, 49. [Google Scholar] [CrossRef]
- Kaminskas, E.; Farrell, A.T.; Wang, Y.-C.; Sridhara, R.; Pazdur, R. FDA Drug Approval Summary: Azacitidine (5-azacytidine, VidazaTM) for Injectable Suspension. Oncologist 2005, 10, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, N.; Sharma, A.R.; Baylin, S.B. Epigenetic therapeutics: A new weapon in the war against cancer. Annu. Rev. Med. 2016, 67, 73–89. [Google Scholar] [CrossRef]
- Zwergel, C.; Schnekenburger, M.; Sarno, F.; Battistelli, C.; Manara, M.C.; Stazi, G.; Mazzone, R.; Fioravanti, R.; Gros, C.; Ausseil, F.; et al. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin. Epigenetics 2019, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- She, S.; Zhao, Y.; Kang, B.; Chen, C.; Chen, X.; Zhang, X.; Chen, W.; Dan, S.; Wang, H.; Wang, Y.J.; et al. Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death Dis. 2020, 11, 724. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, J.; Zhang, C.; Zhao, B.; Jiao, A.O. DNMTs inhibitor SGI-1027 induces apoptosis in Huh7 human hepatocellular carcinoma cells. Oncol. Lett. 2018, 16, 5799–5806. [Google Scholar] [CrossRef] [PubMed]
- Duruisseaux, M.; Martínez-Cardús, A.; Calleja-Cervantes, M.E.; Moran, S.; de Moura, M.C.; Davalos, V.; Piñeyro, D.; Sanchez-Cespedes, M.; Girard, N.; Brevet, M.; et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: A multicentre, retrospective analysis. Lancet Respir. Med. 2018, 6, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Heller, G. DNA methylation as predictive marker of response to immunotherapy? Memo-Mag. Eur. Med. Oncol. 2021, 14, 150–153. [Google Scholar] [CrossRef]
- Sigin, V.O.; Kalinkin, A.I.; Kuznetsova, E.B.; Simonova, O.A.; Chesnokova, G.G.; Litviakov, N.V.; Slonimskaya, E.M.; Tsyganov, M.M.; Ibragimova, M.K.; Volodin, I.V.; et al. DNA methylation markers panel can improve prediction of response to neoadjuvant chemotherapy in luminal B breast cancer. Sci. Rep. 2020, 10, 9239. [Google Scholar] [CrossRef]
- Starzer, A.M.; Heller, G.; Tomasich, E.; Melchardt, T.; Feldmann, K.; Hatziioannou, T.; Traint, S.; Minichsdorfer, C.; Schwarz-Nemec, U.; Nackenhorst, M.; et al. DNA methylation profiles differ in responders versus non-responders to anti-PD-1 immune checkpoint inhibitors in patients with advanced and metastatic head and neck squamous cell carcinoma. J. Immunother. Cancer 2022, 10, e003420. [Google Scholar] [CrossRef]
- Jiang, D.; He, Z.; Wang, C.; Zhou, Y.; Li, F.; Pu, W.; Zhang, X.; Feng, X.; Zhang, M.; Yecheng, X.; et al. Epigenetic silencing of ZNF132 mediated by methylation-sensitive Sp1 binding promotes cancer progression in esophageal squamous cell carcinoma. Cell Death Dis. 2019, 10, 1. [Google Scholar] [CrossRef]
Gene Name | Synonyms: | Location | MIM | Exon Count | Gene ID | Transcripts | Gene Type | Gene Function |
---|---|---|---|---|---|---|---|---|
CDKN1A–cyclin dependent kinase inhibitor 1A | CAP20, CDKN1, CIP1, MDA-6, P21, SDI1, WAF1, p21CIP1 | 6p21.2 | 116899 | 6 | 1026 | 0 REFSEQ mRNAs: NM_000389.5 NM_001220777.2 NM_001220778.2 NM_001291549.3 NM_001374509.1 | Protein coding | Inhibition of cellular proliferation, cyclin-dependent kinase activity, DNA synthesis by DNA polymerase delta; Blocking and controlling cell cycle. |
CDKN2A cyclin dependent kinase inhibitor 2A | ARF, CAI2, CDK4I, CDKN2, CMM2, INK4, INK4A, MLM, MTS-1, MTS1, P14, P14ARF, P16, P16-INK4A, P16INK4, P16INK4A, P19, P19ARF, TP16 | 9p21.3 | 600160 | 10 | 1029 | NM_000077.5 NM_001195132.2 NM_001363763.2 NM_058195.4 NM_058196.1 | Protein coding, tumor suppressor | Cell cycle arrest in G1 and G2 phases; controlling cell proliferation and apoptosis; inhibiting ribosome biogenesis. |
MYC MYC proto-oncogene, bHLH transcription factor | MRTL, MYCC, bHLHe39, c-Myc | 8q24.21 | 190080 | 3 | 4609 | 2 REFSEQ mRNAs: NM_001354870.1 NM_002467.6 | Protein coding | Transcription activation of growth-related genes; regulation of somatic reprogramming, controlling self-renewal of embryonic stem cells. |
SMAD3 SMAD family member 3 | LDS3; mad3; LDS1C; MADH3; JV15-2; hMAD-3; hSMAD3; HSPC193; HsT17436 | 15q22.33 | 603109 | 15 | 4088 | 11 REFSEQ mRNAs: NM_001145102.2 NM_001145103.2 NM_001145104.2 NM_001407011.1 NM_001407012.1 NM_001407013.1 NM_001407014.1 NM_001407015.1 NM_001407016.1 NM_001407017.1 NM_005902.4 | Protein coding | Regulation of chondrogenesis and osteogenesis; binding the TRE element in the promoter region of many genes; Positive regulation PDPK1 kinase activity |
SP1 Sp1 transcription factor | no | 12q13.13 | 189906 | 7 | 6667 | 3 REFSEQ mRNAs: NM_001251825.2 NM_003109.1 NM_138473.3 | Protein coding | Regulation the expression, binding with high affinity to GC-rich motifs; modulating the cellular response to DNA damage; chromatin remodeling; protecting cells against oxidative stress. |
UBC ubiquitin C | HMG20 | 12q24.31 | 191340 | 2 | 7316 | 1 REFSEQ mRNAs: NM_021009.7 | Protein coding | DNA replication; Protein ubiquitination; post-translational protein modification; transcription-coupled nucleotide excision repair (TC-NER) |
Patient ID | Tumor Origin | ICD-10 | TNM Classification | Gender | Age | Smoker | ||
---|---|---|---|---|---|---|---|---|
T | N | M | ||||||
1 | Tongue n = 16 | C02.0 | 1 | 0 | 0 | M | 50 | yes |
2 | C02.0 | 3 | 0 | 0 | F | 53 | yes | |
3 | C02.1 | 2 | 0 | 0 | F | 59 | no | |
4 | C02.1 | 2 | 0 | 0 | M | 71 | yes | |
5 | C02.1 | 3 | 0 | 0 | F | 47 | no | |
6 | C02.1 | 3 | 0 | 0 | M | 63 | no | |
7 | C02.1 | 3 | 0 | 0 | M | 40 | no | |
8 | C02.1 | 3 | 0 | 0 | M | 46 | no | |
9 | C02.1 | 3 | 0 | 0 | M | 47 | yes | |
10 | C02.1 | 3 | 1 | 0 | M | 68 | no | |
11 | C02.1 | 3 | 2b | 0 | F | 60 | No | |
12 | C02.1 | 3 | 0 | 0 | F | 69 | Yes | |
13 | C02.1 | 3 | 0 | 0 | M | 60 | No | |
14 | C02.1 | 3 | 0 | 0 | F | 79 | No | |
15 | C02.1 | 3 | 0 | 0 | M | 64 | Yes | |
16 | C02.1 | 4 | 2 | 0 | M | 36 | No | |
17 | Larynx n = 21 | C32.0 | 2 | 0 | 0 | F | 55 | No |
18 | C32.0 | 3 | 0 | 0 | M | 69 | No | |
19 | C32.0 | 3 | 0 | 0 | M | 59 | Yes | |
20 | C32.0 | 3 | 0 | 0 | M | 62 | No | |
21 | C32.0 | 3 | 1 | 0 | M | 49 | No | |
22 | C32.0 | 3 | 0 | 0 | M | 70 | No | |
23 | C32.0 | 3 | 1 | 0 | M | 58 | Yes | |
24 | C32.0 | 4a | 0 | 0 | M | 71 | Yes | |
25 | C32.0 | 4a | 2б | 0 | M | 64 | No | |
26 | C32.0 | 4a | 2c | 0 | M | 59 | Yes | |
27 | C32.0 | 4a | 1 | 0 | M | 60 | No | |
28 | C32.1 | 3 | 2b | 0 | M | 64 | Yes | |
29 | C32.1 | 4a | 2б | 0 | M | 76 | Yes | |
30 | C32.8 | 2 | 0 | 0 | M | 50 | Yes | |
31 | C32.8 | 3 | 0 | 0 | M | 58 | Yes | |
32 | C32.8 | 3 | 0 | 0 | M | 50 | No | |
33 | C32.8 | 3 | 1 | 0 | M | 58 | No | |
34 | C32.8 | 3 | 1 | 0 | M | 59 | No | |
35 | C32.8 | 3 | 0 | 0 | M | 59 | No | |
36 | C32.8 | 4 | 0 | 0 | M | 72 | Yes | |
37 | Gum n = 3 | C03.0 | 2 | 0 | 0 | F | 53 | No |
38 | C03.1 | 3 | 0 | 0 | M | 66 | No | |
39 | C03.1 | 4a | 0 | 0 | M | 50 | Yes | |
40 | Floor of mouth n = 5 | C04.1 | 2 | 0 | 0 | F | 64 | Yes |
41 | C04.1 | 2 | 0 | 0 | F | 64 | No | |
42 | C04.1 | 3 | 0 | 0 | M | 60 | Yes | |
43 | C04.1 | 3 | 0 | 0 | F | 66 | No | |
44 | C04.8 | 4a | 1 | 0 | M | 32 | No | |
45 | Cheek mucosa n = 3 | C06.0 | 2 | 0 | 0 | M | 63 | Yes |
46 | C06.0 | 3 | 1 | 0 | M | 74 | Yes | |
47 | C06.2 | 2 | 0 | 0 | F | 55 | No | |
48 | Maxillary sinus n = 3 | C31.0 | 4 | 0 | 0 | M | 40 | No |
49 | C31.0 | 3 | 1 | 0 | F | 60 | No | |
50 | C31.0 | 4a | 1 | 0 | M | 53 | Yes |
Gene | Forward Primer Sequence (5′ → 3′) | Reverse Primer Sequence (5′ → 3′) | Product Size (bp) |
---|---|---|---|
CDKN1A | ATTAGTTGGGTATGGTGGTGTATGT | ACCCAAACATATTCCTAAAAAACAA | 540 |
CDKN2A | TTTTTAGTTGGAAAGGAGGAAGG | TCCTCTTCTAAATTTAAAAAACAAAC | 573 |
MYC | TTAATAATAAAAGGGGAAAGAGGATTT | CAAACTAAATCCCCCAATTTACTAC | 516 |
Smad3 | GTTTAAGGGGAAGAAGAGAAAGAGT | AACTACACCCAACTACCTAAATCAC | 550 |
SP1 | TTATTGGTTTTTAATATTGAGAGGG | AACTTAAAATAAACTCATCCTTACC | 363 |
UBC | TTTTTAGATAGTTTTATGGGGTTGG | ACTCAAAAATCAAATATCAAATCAC | 412 |
Genes | Sample | All (n = 50) | TNM Classification ** | Tumor Origin | Age | Smokers | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Under 50 Years (n = 12) | Over 50 Years (n = 38) | Yes | No | |||||||||
T2 (n = 9) | T3 (n = 29) | T4 (n = 11) | Tongue (n = 16) | Larynx (n = 20) | Other (n = 14) | (n = 21) | (n = 29) | |||||
M ± m, Range | ||||||||||||
CDKN1A | T | 0.35 ± 0.21 (0.01 ÷ 1.0) | 0.37 ± 0.21 (0.04 ÷ 0.6) | 0.36 ± 0.21 (0.01 ÷ 0.62) | 0.31 ± 0.19 (0.01 ÷ 1.0) | 0.37 ± 0.17 (0.01 ÷ 0.56) | 0.35 ± 0.17 (0.04 ÷ 0.57) | 0.33 ± 0.26 (0.01 ÷ 1.0) | 0.33 ± 0.19 (0.04 ÷ 0.58) | 0.35 ± 0.22 (0.01 ÷ 1.0) | 0.36 ± 0.24 (0.01 ÷ 0.62) | 0.34 ± 0.19 (0.01 ÷ 1.0) |
N | 0.29 ± 0.19 (0.01 ÷ 0.67) | 0.33 ± 0.19 (0.06 ÷ 0.57) | 0.28 ± 0.20 (0.04 ÷ 0.67) | 0.25 ± 0.18 (0.01 ÷ 0.52) | 0.24 ± 0.20 (0.01 ÷ 0.55) | 0.26 ± 0.20 (0.06 ÷ 0.64) | 0.35 ± 0.19 (0.01 ÷ 0.67) | 0.28 ± 0.20 (0.01 ÷ 0.67) | 0.28 ± 0.20 (0.01 ÷ 0.64) | 0.27 ± 0.18 (0.01 ÷ 0.67) | 0.27 ± 0.22 (0.01 ÷ 0.64) | |
CDKN2A | T | 0.28 ± 0.09 (0.06 ÷ 0.50) | 0.23 ± 0.09 (0.06 ÷ 0.36) | 0.30 ± 0.09 (0.13 ÷ 0.50) | 0.29 ± 0.09 (0.14 ÷ 0.41) | 0.28 ± 0.09 (0.14 ÷ 0.49) | 0.30 ± 0.09 (0.13 ÷ 0.47) | 0.27 ± 0.09 (0.06 ÷ 0.50) | 0.30 ± 0.08 (0.14 ÷ 0.42) | 0.28 ± 0.09 (0.06 ÷ 0.50) | 0.27 ± 0.05 (0.06 ÷ 0.50) | 0.31 ± 0.10 (0.14 ÷ 0.36) |
N | 0.25 ± 0.13 (0.01 ÷ 0.59) | 0.22 ± 0.13 (0.01 ÷ 0.44) | 0.26 ± 0.13 (0.10 ÷ 0.59) | 0.26 ± 0.12 (0.12 ÷ 0.56) | 0.28 ± 0.14 (0.10 ÷ 0.59) | 0.22 ± 0.13 (0.01 ÷ 0.56) | 0.28 ± 0.10 (0.10 ÷ 0.46) | 0.28 ± 0.14 (0.12 ÷ 0.56) | 0.25 ± 0.12 (0.01 ÷ 0.59) | 0.25 ± 0.12 (0.01 ÷ 0.56) | 0.26 ± 0.13 (0.10 ÷ 0.59) | |
MYC | T | 0.12 ± 0.05 (0.01 ÷ 0.27) | 0.13 ± 0.05 (0.07 ÷ 0.24) | 0.12 ± 0.05 (0.01 ÷ 0.27) | 0.13 ± 0.05 (0.08 ÷ 0.17) | 0.12 ± 0.05 (0.06 ÷ 0.26) | 0.12 ± 0.04 (0.07 ÷ 0.24) | 0.13 ± 0.06 (0.01 ÷ 0.27) | 0.11 ± 0.04 (0.03 ÷ 0.17) | 0.12 ± 0.05 (0.01 ÷ 0.27) | 0.11 ± 0.05 (0.03 ÷ 0.28) | 0.13 ± 0.05 (0.01 ÷ 0.24) |
N | 0.12 ± 0.05 (0.04 ÷ 0.33) | 0.10 ± 0.05 (0.04 ÷ 0.18) | 0.12 ± 0.05 (0.05 ÷ 0.21) | 0.12 ± 0.04 (0.06 ÷ 0.33) | 0.10 ± 0.03 (0.04 ÷ 0.20) | 0.13 ± 0.03 (0.06 ÷ 0.19) | 0.12 ± 0.06 (0.06 ÷ 0.33) | 0.12 ± 0.04 (0.06 ÷ 0.21) | 0.12 ± 0.05 (0.04 ÷ 0.33) | 0.11 ± 0.02 (0.04 ÷ 0.33) | 0.12 ± 0.06 (0.07 ÷ 0.16) | |
Smad3 | T | 0.69 ± 0.19 (0.01 ÷ 0.83) | 0.68 ± 0.16 (0.01 ÷ 0.83) | 0.68 ± 0.18 (0.01 ÷ 0.83) | 0.72 ± 0.25 (0.61 ÷ 0.81) | 0.69 ± 0.19 (0.01 ÷ 0.83) | 0.72 ± 0.27 (0.01 ÷ 0.83) | 0.65 ± 0.008 (0.04 ÷ 0.79) | 0.74 ± 0.05 (0.61 ÷ 0.81) | 0.68 ± 0.21 (0.01 ÷ 0.83) | 0.67 ± 0.17 (0.01 ÷ 0.83) | 0.71 ± 0.19 (0.01 ÷ 0.79) |
N | 0.65 ± 0.17 (0.32 ÷ 0.82) | 0.64 ± 0.17 (0.32 ÷ 0.81) | 0.65 ± 0.16 (0.32 ÷ 0.82) | 0.63 ± 0.19 (0.32 ÷ 0.80) | 0.65 ± 0.17 (0.32 ÷ 0.81) | 0.62 ± 0.11 (0.38 ÷ 0.81) | 0.71 ± 0.18 (0.32 ÷ 0.82) | 0.67 ± 0.17 (0.32 ÷ 0.80) | 0.65 ± 0.16 (0.32 ÷ 0.82) | 0.64 ± 0.16 (0.32 ÷ 0.82) | 0.67 ± 0.16 (0.32 ÷ 0.79) | |
SP1 | T | 0.22 ± 0.10 * (0.09 ÷ 0.45) | 0.22 ± 0.10 * (0.01 ÷ 0.38) | 0.21 ± 0.11 * (0.01 ÷ 0.42) | 0.23 ± 0.09 * (0.01 ÷ 0.45) | 0.20 ± 0.09 * (0.11 ÷ 0.42) | 0.24 ± 0.08 * (0.11 ÷ 0.45) | 0.21 ± 0.11 * (0.09 ÷ 0.42) | 0.23 ± 0.12 * (0.12 ÷ 0.45) | 0.21 ± 0.09 * (0.09 ÷ 0.42) | 0.22 ± 0.10 * (0.11 ÷ 0.45) | 0.21 ± 0.10 * (0.09 ÷ 0.42) |
N | 0.11 ± 0.06 (0.01 ÷ 0.23) | 0.11 ± 0.09 (0.01 ÷ 0.27) | 0.11 ± 0.09 (0.04 ÷ 0.42) | 0.09 ± 0.06 (0.01 ÷ 0.30) | 0.10 ± 0.05 (0.04 ÷ 0.20) | 0.09 ± 0.05 (0.01 ÷ 0.23) | 0.13 ± 0.05 (0.01 ÷ 0.17) | 0.11 ± 0.05 (0.04 ÷ 0.20) | 0.11 ± 0.05 (0.01 ÷ 0.23) | 0.11 ± 0.05 (0.01 ÷ 0.19) | 0.10 ± 0.05 (0.01 ÷ 0.23) | |
UBC | T | 0.34 ± 0.23 (0.01 ÷ 0.72) | 0.36 ± 0.23 (0.18 ÷ 0.52) | 0.33 ± 0.23 (0.01 ÷ 0.72) | 0.36 ± 0.11 (0.01 ÷ 0.72) | 0.28 ± 0.23 (0.01 ÷ 0.72) | 0.34 ± 0.21 (0.01 ÷ 0.72) | 0.41 ± 0.24 (0.01 ÷ 0.72) | 0.35 ± 0.23 (0.01 ÷ 0.72) | 0.34 ± 0.23 (0.01 ÷ 0.72) | 0.37 ± 0.23 (0.01 ÷ 0.72) | 0.32 ± 0.22 (0.01 ÷ 0.72) |
N | 0.16 ± 0.08 (0.01 ÷ 0.75) | 0.43 ± 0.25 (0.02 ÷ 0.75) | 0.27 ± 0.25 (0.01 ÷ 0.72) | 0.26 ± 0.25 (0.01 ÷ 0.65) | 0.27 ± 0.26 (0.01 ÷ 0.70) | 0.24 ± 0.23 (0.01 ÷ 0.75) | 0.39 ± 0.25 (0.01 ÷ 0.72) | 0.23 ± 0.21 (0.02 ÷ 0.58) | 0.31 ± 0.26 (0.01 ÷ 0.75) | 0.26 ± 0.27 (0.01 ÷ 0.72) | 0.31 ± 0.24 (0.01 ÷ 0.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumaniyazova, E.; Aghajanyan, A.; Kurevlev, S.; Tskhovrebova, L.; Makarov, A.; Gordon, K.; Lokhonina, A.; Fatkhudinov, T. SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients. Genes 2024, 15, 281. https://doi.org/10.3390/genes15030281
Jumaniyazova E, Aghajanyan A, Kurevlev S, Tskhovrebova L, Makarov A, Gordon K, Lokhonina A, Fatkhudinov T. SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients. Genes. 2024; 15(3):281. https://doi.org/10.3390/genes15030281
Chicago/Turabian StyleJumaniyazova, Enar, Anna Aghajanyan, Sergey Kurevlev, Leyla Tskhovrebova, Andrey Makarov, Konstantin Gordon, Anastasiya Lokhonina, and Timur Fatkhudinov. 2024. "SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients" Genes 15, no. 3: 281. https://doi.org/10.3390/genes15030281
APA StyleJumaniyazova, E., Aghajanyan, A., Kurevlev, S., Tskhovrebova, L., Makarov, A., Gordon, K., Lokhonina, A., & Fatkhudinov, T. (2024). SP1 Gene Methylation in Head and Neck Squamous Cell Cancer in HPV-Negative Patients. Genes, 15(3), 281. https://doi.org/10.3390/genes15030281