Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Quality Assessment and Data Extraction
2.5. Bioinformatics Analysis
3. Results
No. | First Author, Year | Country | Risk Factor/Disease | Sample Size (Male) | Study Design |
---|---|---|---|---|---|
1 | Adamska-Patruno et al., 2019 [31] | Poland | Obesity | 927 (473) | Case–control |
2 | Al-Eitan et al., 2012 [32] | Jordan | Drug use | 460 (220) | Case–control |
3 | Aliasghari et al., 2021 [33] | Iran | Obesity | 531 (0) | Case–control |
4 | Anney et al., 2007 [34] | Australia | Substance dependence | 815 (–) | Cohort study |
5 | Aroche et al., 2020 [35] | Brazil | Crack cocaine addiction | 1069 (605) | Case–control |
6 | Avsar et al., 2017 [36] | Turkey | Obesity | 448 (142) | Case–control |
7 | Bach et al., 2015 [37] | Germany | Alcohol dependence | 81 (43) | Cross-sectional |
8 | Batel et al., 2008 [38] | France | Alcohol dependence | 230 (138) | Case–control |
9 | Beuten et al., 2006 [39] | USA | Nicotine dependence | 2037 (668) | Cross-sectional |
10 | Beuten et al., 2007 [40] | USA | Nicotine dependence | 2037 (–) | Cohort study |
11 | Céspedes et al., 2021 [41] | Brazil | Alcohol dependence | 401 (366) | Case–control |
12 | Carr et al., 2014 [42] | USA | Obesity | 245 (119) | Cross-sectional |
13 | Clarke et al., 2014 [43] | USA | Opioid and cocaine addiction | 3311 (1554) | Case–control |
14 | da Silva Junior et al., 2020 [44] | Brazil | Alcohol dependence | 300 (300) | Case–control |
15 | Doehring et al., 2009 [45] | Germany | Opioid dependence | 88 (62) | Case–control |
16 | Erlich et al., 2010 [28] | USA | Nicotine and opioid dependence | 505 (153) | Cross-sectional |
17 | Fedorenko et al., 2012 [46] | Russia | Alcohol dependence | 501 (501) | Case–control |
18 | Fehr et al., 2013 [47] | Germany | Alcohol dependence | 1159 (804) | Case–control |
19 | Fernàndez-Castillo et al., 2010 [48] | Spain | Cocaine dependence | 338 (142) | Case–control |
20 | Fernàndez-Castillo et al., 2013 [49] | Spain | Cocaine dependence | 914 (755) | Case–control |
21 | Flanagan et al., 2006 [50] | USA | Drug addiction (cocaine, alcohol, heroin, methadone, and methamphetamine) | 1024 (–) | Case–control |
22 | Ge et al., 2015 [51] | China | Blood pressure and lipid level | 3079 (1864) | Cohort study |
23 | Gellekink et al., 2007 [8] | Netherland | Venous thrombosis | 607 (302) | Case–control |
24 | Gold et al., 2012 [52] | USA | Smoking cessation | 1217 (553) | RCT |
25 | Hall et al., 2014 [53] | USA | CVD, aspirin and vitamin E | 23,273 (0) | RCT |
26 | Hall et al., 2016 [54] | USA | T2D | 909 (0) | Cross-sectional |
27 | Harrell et al., 2016 [55] | USA | Smoking | 96 (71) | Cross-sectional |
28 | Huang et al., 2009 [56] | USA | Nicotine dependence | 2037 (–) | Cohort study |
29 | Johnstone et al., 2004 [57] | USA | Smoking behavior | 975 (399) | Cohort study |
30 | Joshua WB, 2013 [58] | USA | Obesity and drug abuse | 59 (29) | Cross-sectional |
31 | Kaminskaite et al., 2021 [59] | Lithuania | Alcohol dependence | 329 (127) | Case–control |
32 | Kishi et al., 2008 [7] | Japan | Meth use disorder | 944 (479) | Case–control |
33 | Ko et al., 2012 [60] | China | Atherosclerosis | 1503 (696) | Cross-sectional |
34 | Koijam et al., 2021 [61] | India | Heroin dependence | 279 (110) | Case–control |
35 | Kring et al., 2009 [62] | Denmark | T2D and obesity | 1557 (1557) | Cross-sectional |
36 | Kuo et al., 2018 [63] | China | Amphetamine dependence | 1063 (854) | Case-control |
37 | Lachowicz et al., 2020 [64] | Poland | Polysubstance addiction | 601 (601) | Case–control |
38 | Landgren et al., 2011 [33] | Sweden | Alcohol dependence | 115 (88) | Case–control |
39 | Långberg et al., 2013 [65] | Sweden | Obesity and Type 2 diabetes | 1177 (827) | Case–control |
40 | Levran et al., 2015 [66] | USA | Heroin (OD) and cocaine (CD) addictions | 522 (281) | Case–control |
41 | Li et al., 2006 [67] | China | Heroin dependence | 420 (–) | Cross-sectional |
42 | Li et al., 2016 [68] | China | Heroin addiction | 1080 (–) | Case–control |
43 | Lind et al., 2009 [69] | Australia | Alcohol consumption behavior | 305 (305) | Case–control |
44 | Lohoff et al., 2009 [70] | USA | Cocaine dependence | 608 (328) | Case–control |
45 | Ma et al., 2005 [71] | USA | Nicotine dependence | 2037 (686) | Case–control |
46 | Ma et al., 2018 [6] | China | Coronary artery disease | 611 (471) | Case–control |
48 | Mattioni et al., 2022 [72] | France | Alcohol use, nicotine, and cannabis dependence | 3056 (1834) | Case–control |
47 | Mir et al., 2018 [73] | India | Cardiovascular disease | 200 (96) | Cohort study |
49 | Mutschler et al., 2013 [74] | Germany | Smoking behavior | 551 (–) | Case–control |
50 | Najafabadi et al., 2005 [75] | Iran | Opium dependence | 230 (230) | Case–control |
51 | Nelson et al., 2014 [76] | USA and Australia | Heroin dependence | 3485 (2095) | Case–control |
52 | Noble et al., 1994 [77] | USA | Smoking | 354 (190) | Case–control |
53 | Peng et al., 2013 [78] | China | Heroin dependence | 844 (436) | Case–control |
54 | Perez de los Cobos et al., 2007 [79] | Spain | Heroin dependence | 426 (305) | Case–control |
55 | Prado-Lima et al., 2004 [80] | Brazil | Smoking behaviors | 625 (266) | Cross-sectional |
56 | Ragia et al., 2013 [81] | Greek | Smoking initiation | 410 (215) | Case–control |
57 | Ragia et al., 2016 [82] | Turkey | Alcohol dependence | 146 (111) | Case–control |
58 | Schacht et al., 2009 [9] | USA | Smoking marijuana | 40 (30) | Cross-sectional |
59 | Schacht et al., 2022 [83] | USA | Alcohol dependence | 87 (33) | RCT |
60 | Shiels et al., 2009 [84] | USA | Smoking | 10,059 (3873) | Cross-sectional |
61 | Sipe, et al., 2002 [85] | USA | Drug users (drugs, alcohol, nicotine) | 2881 (–) | Case–control |
62 | Spitta et al., 2022 [86] | Germany | Alcohol dependence | 29 (26) | Case–control |
63 | Suchankova et al., 2015 [87] | USA | Alcohol dependence | 2671 (2405) | Case–control |
64 | Sun et al., 2021 [88] | China | Methamphetamine, heroin, and alcohol addiction | 6146 (4364) | Case–control |
65 | Tyndale et al., 2006 [89] | Canada | Drug addiction | 749 (242) | Cross-sectional |
66 | Van Der Mee et al., 2018 [90] | Greece | Exercise behavior | 12,929 (5144) | Cohort study |
67 | Vereczkei et al., 2013 [91] | Hungary | Heroin dependence | 858 (597) | Case–control |
68 | Voisey et al., 2011 [92] | Australia | Alcohol, nicotine, and opiate dependence | 748 (443) | Case–control |
69 | Wang et al., 2018 [93] | China | Coronary artery disease | 707 (311) | Case–control |
70 | Wei et al., 2012 [94] | China | Nicotine dependence | 480 (480) | Cross-sectional |
71 | Xie et al., 2013 [95] | China | Heroin addiction | 533 (533) | Case–control |
72 | Xiu et al., 2015 [96] | China | Type 2 diabetes | 1320 (758) | Case–control |
73 | Xu et al., 2004 [97] | Germany and China | Heroin dependence | 1462 (–) | Case–control |
74 | Ying et al., 2009 [98] | China | Obesity | 426 (217) | Case–control |
75 | Yu et al., 2006 [99] | USA | Nicotine dependence | 1590 (730) | Cross-sectional |
76 | Zain et al., 2015 [100] | Pakistan | Type 2 diabetes | 191 (107) | Cross-sectional |
77 | Zhu et al., 2013 [101] | China | Opioid dependence | 939 (343 *) | Case–control |
Total number of participants (accumulative) | 117,197 (43,839) |
No. | Risk Factor/Disease | Gene Name ‡ | Significant SNVs † | Non-Significant SNVs † |
---|---|---|---|---|
1 | Cardiovascular diseases (CVDs) | AP2A2 | rs7396366 [6] | |
BZRAP1 | rs2526378 [93] | |||
COMT | rs4680 [51,53,60,73] Haplotype: rs2097603–rs4633–rs4680–rs174699 (G–C–G–T) [8] rs4633 [60] rs4818 [53] | (rs2097603 rs4633 rs174699) [8] Haplotypes: rs2097603–rs4633–rs4680–rs174699 (A–C-G–T, A–T-A–T, A–C–G–C) [8] | ||
FAAH | C385A (rs324420) [9] | |||
GLP1R | rs4714210 [6] | (rs761387 rs2268635 rs7769547 rs910162 rs3765468 rs3765467 rs3765466 rs10305456 rs10305518 rs1820) [6] | ||
2 | Type 2 diabetes (T2D) | 5HT2A | rs6311 [62] | |
5HT2C | rs3813929 [62] | |||
ADRA2A | (rs553668 rs521674) [65] | rs11195419 [65] | ||
COMT | rs4646312 [96] rs4680 [54,62,96] (900 I/D C) [100] (rs4633 rs4818) [54] | |||
DRD3 | (rs167771 rs324029 rs8076005 rs20667) [96] | |||
SLC6A4 | Haplotypes: rs4646312, rs4680 (C–G, T–A) [96] Diplotype: rs4646312–rs4680 (C–G_T–G) SNP–SNP interactions Additive × additive (rs4680 × rs2066713) Dominant × dominant (rs4680 × rs2066713) [11] | Haplotypes: rs8076005, rs2066713 (A–A, A–G, G–G) [96] | ||
3 | Obesity | 5HT2AR | –c.1438 A>G [98] | |
5HT2C | Combined genotype with COMT (rs3813929 rs4680) [62] | |||
ANNK1 | rs1800497 [33] | |||
ADRA2A | (rs553668 rs521674) [65] | rs11195419 [65] | ||
COMT | rs4680 [62] | rs4580 [42] | ||
DAT1 | rs28363170 [42] | |||
DBH | (rs77905 rs6271 rs1611115 rs1108580) [42] | |||
DDC | (rs2060762 rs11575543 rs11575542 rs11575522 rs11238131) [42] | |||
DRD1 | rs4532 [42] | |||
DRD2 | rs1799732 [33] | rs1800497 [42] (rs1800498 rs6277) [72] | ||
DRD3 | rs6280 [42] | |||
DRD4 | rs4646984 [42] | |||
HTR1A | (rs6295 rs1800044 rs1799920 rs10042486) [42] | |||
HTR1B | (rs6296 rs13212041 rs130058) [42] | |||
HTR2A | rs6314 [42] | (rs927544 rs7997012 rs6313 rs6311 rs2770296 rs1923886) [42] | ||
LEPR | rs1137100 [58] | rs1137101 [58] | ||
MAOA | MAOA-LPR (3.5R/4R) [42] u VNTR [36] | |||
MC4R | (rs1350341 rs17782313 rs633265) [31] | |||
OPRD | (rs569356 rs2236861 rs204076 rs7773995 rs514980 rs2281617 rs1799971 rs12205732 rs10485057 rs17174801) [42] | |||
SERT | (rs2066713 rs2020933 rs16965628 rs1042173) [42] | |||
SPR | (rs2421095 rs1876487) [42] | |||
TH | rs71029110 [42] | |||
TPH2 | (rs7963720 rs7305115 rs4290270 rs17110690 rs1487275 rs17110747) [42] | |||
4 | Smoking and nicotine dependence | 5HT2A | T102C [80] | |
ANKK1 | (rs11604671 rs2734849) [56] | (rs10891545 rs7945132 rs4938013 rs7118900 rs1800497) [56] | ||
CHRNA3 | (rs660652 rs1051730) [28] | (rs6495308 rs12443170) [28] | ||
CHRNA4 | rs2236196 [94] | |||
CHRNA5 | (DRD2/5-HT2CR –759C>T genotype combinations: A1–/–759T–, A1+/–759T–, A1–/–759T + A1+/–759T+; DRD2/5-HT2CR –697G>C genotype combinations: A1–/–697C–, A1+/–697C–, A1–/–697C+ A1+/–697C+, 5-HT2CR –759C>T; interaction of 5-HT2CR –759C>T and DRD2 TaqIA; 5-HT2CR –697G>C; interaction of 5-HT2CR –697G>C and DRD2 TaqIA) [28] (rs936460 rs936461 rs12280580) [55] | rs16969968 [28] | ||
CHRNB3 | rs4954 [94] rs660652 [28] | |||
COMT | rs4680 [39,84] (rs740603 rs4680 rs174699 rs933271 rs174699) [39] Haplotype: rs740603–rs4680–rs174699 (A–G–T) rs933271–rs4680–rs174699 (T–G–T, C–A–T) [39] | rs4633 [39] rs4680 [74] | ||
DBH | rs77905 [84] | |||
DDC | rs11575461 [94] (rs12718541 rs1470747 rs11238214 rs2060761) [99] rs921451 [71,99] Haplotype: rs921451–rs3735273–rs1451371–rs2060762 (T–G–T–G) rs921451–rs3735273–rs1451371–rs3757472 (T–G–T–G) [71] | (rs11575542 rs732215 rs1451371 rs3823674 rs1470750 rs11575334 rs4947644) [99] (rs998850 rs3735273 rs1470750 rs1451371 rs732215 rs3757472 rs2060762) [71] | ||
DRD2 | (rs11214613 rs6589377) [94] TaqIA1 [77] | (rs6278 rs6279 rs1079594 rs6275 rs2075654 rs2587548 rs2075652 rs1079596 rs4586205 rs7125415 rs4648318 rs4274224 rs7131056 rs4648317 rs4350392 rs6589377) [56] C32806T [57] (rs1800498 rs6277) [72] | ||
DRD3 | rs2630351 [94] | |||
DRD4 | (rs936460 rs936461 rs12280580) [55] | rs1805186 [55] | ||
DRD5 | rs1967550 [94] | |||
FIGNL1 | rs10230343 [99] | |||
GABBR2 | rs2779562 [40] | |||
GALR1 | rs2717162 [52] | |||
GRB10 | (rs12669770 rs12540874 rs2715129) [99] | |||
MAOA | rs1801291 [84] | |||
MAP3K4 | rs2314378 [94] | |||
PPP1R1B | Haplotype: rs2271309–rs907094–rs3764352–rs3817160 (–C–T–G–C) rs879606 [40] | rs1874228 [40] | ||
ZNFN1A1 | (rs11980407 rs1110701) [99] | |||
5 | Alcohol dependence | ADH1B | rs1229984 [88] | |
AGBL4 | rs147247472 [88] | |||
ANKK1 | rs1800497 [59] (rs4938015 rs1800497) [72,86] | |||
ANKS1B | rs2133896 [88] | |||
CHRNA3 | (rs6495307 rs1317286 rs12443170 rs8042059) [34] | |||
CHRNA4 | (rs1044396 snp12284 rs6011776 rs6010918) [34] | |||
CHRNA6 | (rs17621710 rs10087172 rs10109429 rs2196129 rs16891604) [34] | |||
CHRNB2 | (rs2072659 rs2072660) [34] | |||
CHRNB3 | rs13261190 [34] | (rs62518216 rs62518217 rs62518218 rs16891561) [34] | ||
COMT | (rs165774 rs4680) [59,83] Haplotype: rs4680–rs165774 (–A–A) [92] | (rs4633 rs740602 rs4818 rs4680 rs4646315) [41] | ||
CRH | rs6999100 [58] | |||
CSNK1E | rs135745 [58] | |||
CTNNA2 | rs10196867 [88] | |||
DDC | rs11575457 [41] | (rs5884156 rs4490786 rs11575457 rs58085392 rs2876829 rs11575375 rs3735273 rs6950777 rs6264) [41] | ||
DAT1 | (rs6350 rs463379) [69] | (rs10064219 rs12516948 rs40184 rs6347 rs464049 rs403636) [69] | ||
DRD1 | rs686 [38] (rs2283265 rs1076560 rs2075654 rs1125394 rs2734836 rs1799732) [32] Haplotype: rs686–rs4532 (–T–G) [38] | (rs686 rs155417 rs4532) [41] | ||
DRD2 | (rs6277 rs1800498) [72] | A2/A1 [82] rs1800497 [34] (rs6277 rs6275 rs1076560 rs35352421 rs11608185 rs12808482) [41] | ||
DRD3 | Ser9Gly [82] (rs149281192 rs2251177 rs3732783 rs6280) [41] | |||
DRD4 | rs7124601 | |||
DRD5 | (rs2076907 rs6283 rs1967551) [41] | |||
DβH | 1021 C/T [82] | |||
FAAH | 385 C/A [85] | |||
GHRL | (rs42451 rs35680) [34] | (rs4684677 rs34911341 rs696217 rs26802) [34] | ||
GHSR | rs495225 [34] | (rs2948694 rs572169 rs2232165) [34] | ||
GLP1R | (rs7766663 rs2235868 rs7769547 rs10305512 rs2143734 rs2268650 rs874900 rs6923761 rs7341356 rs932443 rs2300613) [87] | (rs7738586 rs9296274 rs2268657 rs3799707 rs3799707 rs910170 rs1042044 rs12204668 rs1076733 rs2268640 rs2206942 rs10305514 rs4714210 rs4254984 rs9968886) [87] | ||
GRIK1 | rs2832407 [82] | |||
HTR2A | (rs6313 rs6311) [44] | |||
OPRM1 | rs1799971 [37] | A118G [82] | ||
PIP4K2A | (rs746203 rs2230469) [46] | (rs8341 rs943190 rs1132816 rs1417374 rs11013052) [46] | ||
SLC6A3 | (rs429699 rs8179029 rs6347 rs6348 rs460000 rs465130 rs465989 rs13189021 rs2254408 rs2270914 rs2270913 rs8179023 rs6350) [41] | |||
TH | (rs6578990 rs12419447 rs6357 rs7925924 rs4074905 rs6356 rs7925375) [41] | |||
VMAT2 | rs363387 [47] Haplotypes: rs363332, rs363387 (–G–T, –G–G) rs363387–rs363333 (–T–T) rs363333–rs363334 (C–T) rs363387–rs363333–rs363334 (–T–T–C) rs363332–rs363387–rs363333–rs363334 (–G–T–T–C) [47] | (rs363371 rs363324 rs11197931) [47] | ||
6 | Drug addiction | ADH1B | rs1229984 [88] | |
AGBL4 | rs147247472 [88] | |||
ANKK1 | (rs877137 rs877138 rs12360992 rs4938013 rs2734849 rs2734848) [76] rs1800497 [45,91] | rs1800497 [76] rs7118900 [66] | ||
ANKS1B | rs2133896 [88] | |||
CDNF | (rs11259365 rs7094179 rs7900873 rs2278871) [70] | |||
CHRM5 | rs7162140 [102] | (rs661968 257A>T rs2702309 rs2702304 rs2576302 rs2705353) [102] | ||
CHRNA4 | (rs755203 rs2273506 rs2273505 rs3787141 rs3787140 rs2273504 rs2273502 rs2273501 rs1044396 rs1044397 rs3787137 rs2236196 rs4522666) [7] | |||
CHRNA5 | rs16969968 [35] Haplotypes: rs16969968–rs660652–rs1051730–rs6495308–rs12443170 (A–G–A–T–G, G–G–G–T–G)) [28] (rs588765 rs514743) [35] | |||
CHRNB2 | (rs4845652 rs2072658 rs2072659 rs2072660 rs3811450) [7] | |||
CNTFR | rs7036351 [49] | |||
COMT | rs4680 [66] | rs4680 [91] (rs933271 rs2239393 rs4818) [66] (rs265981 rs1800497 VNTR 130–166 bp rs2519152 VNTR) [90] | ||
CSNK1E | rs5757037 [66] | |||
CTNNA2 | rs10196867 [88] | |||
DAT1 | Int8 VNTR [48] (rs28363170 rs3836790 rs246997) [61] | SLC6A3 VNTR [67] 3′UTR VNTR [48] (rs40184 rs27048 rs37021 rs250683 rs250682 rs427284) rs458609) [61] | ||
DBH | rs6479643 [49] | rs1611115 [95] rs1108580 [66] 1021C>T [81] (rs1108580 5UTR ins/del) [48] rs2519152 [90] | ||
DCC | (rs16956878 rs12607853 rs2292043) [68] | (rs2122822 rs2329341) [66] (rs17753970 rs934345 rs2229080) [68] | ||
DLG2 | (rs575050, rs2512676, rs17145219, rs2507850) [68] | |||
DRD1 | (rs4532 rs686) [101] | (rs4532 rs5326 rs2168631 rs6882300 rs267418) [78] (rs686 rs5326) [66] (rs10078866 rs10063995 rs5326 rs1799914 rs4867798) [101] rs265981 [90] | ||
DRD2 | TaqI A1 [67,75,79] (rs2234689 rs1554929 rs2440390 rs1076563) [76] rs1079597 [91] rs1076560 [43,45] (241 A>G; TaqIB A>G; TaqID G>A; and intron 4 T>C) [97] (759 C>T; 697 G>C) [81] Haplotypes: rs1076560, rs1800498, rs1079597, rs6276, and rs180049 of the ANKK1 (C–T–G–A–T, C–T–G–A–C) [64] | rs7125415 [76] (141 ins/del C; intron 6 ins/del G; 311 Ser>Cys; 20236 C>T; exon 822640 C>G; and TaqIA G>A) [97] rs1800498 [72,91] (rs1076560 rs2283265 rs2587548 rs1076563 rs1079596 rs1125394 rs2471857 rs4648318 rs4274224 rs1799978) [66] TaqIA [81] rs1079597 [48] rs1800497 [48,90] (rs12364283 rs1799978 rs1799732 rs4648317 rs1800496 rs1801028 rs6275 rs6277) [45,72] | ||
DRD3 | Haplotype: rs324029–rs6280–rs9825563 (A–T–A) rs2134655–rs963468–rs9880168 (A–T–A) [63] | (rs3773678 rs167771) [66] rs6280 [90] (rs2046496 rs2630351) [63] | ||
DRD4 | rs1800955 [91] | (rs936462 rs747302) [91] VNTR 48 bp [90] | ||
DRD5 | DRP (A9/A9) [67] rs2867383 [66] VNTR 130–166 bp [90] | |||
FAAH | (rs12075550 rs6658556 796A>G rs932816 rs4660930) [50] | 385 C/A * [50,89] | ||
FAT3 | (rs10765565 rs4753069 rs2197678 rs7927604) [68] | |||
HTR1E | rs1408449 [49] | |||
HTR2A | (rs6561332 rs6561333) [49] | |||
KTN1 | (rs10146870 rs1138345 rs10483647 rs1951890 rs17128657 rs945270) [68] | |||
NCAM1 | (rs4492854 rs587761) [76] | rs11214546 [76] | ||
NGFR | rs534561 [49] | |||
NTF3 | rs4073543 [49] | |||
NTRK2 | rs1147193 [49] | |||
NTRK3 | (rs12595249 rs744994 rs998636) [49] | |||
TH | rs2070762 [49] | |||
TTC12 | (rs2303380 rs10891536 rs4938009 rs7130431 rs12804573) [76] | rs719804 [76] | ||
7 | Exercise Behavior | COMT | rs4680 [90] | |
DAT1 | VNTR 440 bp [90] | |||
DBH | rs2519152 [90] | |||
DRD1 | rs265981 [90] | |||
DRD2/ANKK1 | rs1800497 [90] | |||
DRD3 | rs6280 [90] | |||
DRD4 | VNTR 48 bp (7r) [90] | |||
DRD5 | VNTR 130–166 bp [90] | |||
MAOA | VNTR 30 bp [90] |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 29 March 2023).
- Hoy, D.; Rao, C.; Nhung, N.T.T.; Marks, G.; Hoa, N.P. Risk factors for chronic disease in vietnam: A review of the literature. Prev. Chronic Dis. 2013, 10, 120067. [Google Scholar] [CrossRef]
- Swanson, L.W. The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 1982, 9, 321–353. [Google Scholar] [CrossRef] [PubMed]
- van den Buuse, M. Role of The Mesolimbic Dopamine System in Cardiovascular Homeostasis. Clin. Exp. Pharmacol. Physiol. 1998, 25, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Cercato, C.; Fonseca, F.A. Cardiovascular risk and obesity. Diabetol. Metab. Syndr. 2019, 11, 74. [Google Scholar] [CrossRef]
- Ma, X.; Lu, R.; Gu, N.; Wei, X.; Bai, G.; Zhang, J.; Deng, R.; Feng, N.; Li, J.; Guo, X. Polymorphisms in the Glucagon-Like Peptide 1 Receptor (GLP-1R) Gene Are Associated with the Risk of Coronary Artery Disease in Chinese Han Patients with Type 2 Diabetes Mellitus: A Case-Control Study. J. Diabetes Res. 2018, 2018, 1054192. [Google Scholar] [CrossRef]
- Kishi, T.; Ikeda, M.; Kitajima, T.; Yamanouchi, Y.; Kinoshita, Y.; Kawashima, K.; Inada, T.; Harano, M.; Komiyama, T.; Hori, T.; et al. Alpha4 and beta2 subunits of neuronal nicotinic acetylcholine receptor genes are not associated with methamphetamine-use disorder in the Japanese population. Ann. N. Y. Acad. Sci. 2008, 1139, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Law, M.; Morris, J.K.; den Heijer, M.; Lewington, S.; Clarke, R.; Clarke, R.; Smith, A.D.; Jobst, K.A.; Czeizel, A.E.; et al. Catechol-O-methyltransferase genotype is associated withplasma totalhomocysteine levels andmay increase venous thrombosisrisk. Thromb. Haemost. 2007, 98, 756–764. [Google Scholar]
- Schacht, J.P.; Selling, R.E.; Hutchison, K.E. Intermediate cannabis dependence phenotypes and the FAAH C385A variant: An exploratory analysis. Psychopharmacology 2009, 203, 511–517. [Google Scholar] [CrossRef]
- Le Moal, M.; Simon, H.; Burattini, C.; Battistini, G.; Tamagnini, F.; Aicardi, G.; Espejo, E.F.; Miñano, J.; Bengtson, C.P.; Osborne, P.B.; et al. Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiol. Rev. 1991, 71, 155–234. [Google Scholar] [CrossRef]
- Kalivas, P.W.; Sorg, B.A.; Hooks, M.S. The pharmacology and neural circuitry of sensitization to psychostimulants. Behav. Pharmacol. 1993, 4, 315–334. [Google Scholar] [CrossRef]
- Abercrombie, E.D.; Keefe, K.A.; DiFrischia, D.S.; Zigmond, M.J. Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex. J. Neurochem. 1989, 52, 1655–1658. [Google Scholar] [CrossRef]
- Roitman, M.F.; Wheeler, R.A.; Wightman, R.M.; Carelli, R.M. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress Peter. Nat. Neurosci. 2008, 11, 1376–1377. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Wilks, D.; Buuse, M.v.D. A functional interaction between the mesolimbic dopamine system and vasopressin release in the regulation of blood pressure in conscious rats. Neuroscience 1997, 81, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Smith, O.A.; Devito, J.L.; Astley, C.A. Organization of central nervous system pathways influencing blood pressure responses during emotional behavior. Clin. Exp. Hypertens. Part A Theory Pract. 1984, 6, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Kami, K.; Tajima, F.; Senba, E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci. Rep. 2018, 8, 11540. [Google Scholar] [CrossRef]
- Shpakov, A.O.; Derkach, K.V.; Berstein, L.M.; Penna, V.; Lipay, M.V.; Duailibi, M.T.; Duailibi, S.E.; Moscato, P.; Santoni, M.; Conti, A.; et al. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: Promising target to treat and prevent these diseases. Future Sci. OA 2015, 1, FSO25. [Google Scholar] [CrossRef]
- Sukhov, I.B.; Derkach, K.V.; Chistyakova, O.V.; Bondareva, V.M.; Shpakov, A.O. Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin. J. Evol. Biochem. Physiol. 2016, 52, 204–216. [Google Scholar] [CrossRef]
- Costa, R.M.; Gutierrez, R.; De Araujo, I.E.; Coelho, M.R.P.; Kloth, A.D.; Gainetdinov, R.R.; Caron, M.G.; Nicolelis, M.A.L.; Simon, S.A. Dopamine levels modulate the updating of tastant values. Genes Brain Behav. 2007, 6, 314–320. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef]
- Gainetdinov, R.R. Mesolimbic dopamine in obesity and diabetes. Am. J. Physiol. Integr. Comp. Physiol. 2007, 293, R601–R602. [Google Scholar] [CrossRef]
- Hunter, D.J.; Reddy, K.S. Noncommunicable diseases. N. Engl. J. Med. 2013, 369, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.; Ee, N.; Peters, J.; Beckett, N.; Booth, A.; Rockwood, K.; Anstey, K.J. Common risk factors for major noncommunicable disease, a systematic overview of reviews and commentary: The implied potential for targeted risk reduction. Ther. Adv. Chronic Dis. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Xiang, K.; Wang, Y.; Zheng, T.; Jia, W.; Li, J.; Chen, L.; Shen, K.; Wu, S.; Lin, X.; Zhang, G.; et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: Significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 2004, 53, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, D.M.A.; Pasterkamp, R.J. Getting connected in the dopamine system. Prog. Neurobiol. 2008, 85, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023); John Wiley & Sons: Cochrane, UK, 2023; Available online: https://www.training.cochrane.org/handbook (accessed on 14 January 2024).
- Sohani, Z.N.; Meyre, D.; de Souza, R.J.; Joseph, P.G.; Gandhi, M.; Dennis, B.B.; Norman, G.; Anand, S.S. Assessing the quality of published genetic association studies in meta-analyses: The quality of genetic studies (Q-Genie) tool. BMC Genet. 2015, 16, 50. [Google Scholar] [CrossRef]
- Erlich, P.M.; Hoffman, S.N.; Rukstalis, M.; Han, J.J.; Chu, X.; Kao, W.H.L.; Gerhard, G.S.; Stewart, W.F.; Boscarino, J.A. Nicotinic acetylcholine receptor genes on chromosome 15q25.1 are associated with nicotine and opioid dependence severity. Hum. Genet. 2010, 128, 491–499. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 1–14. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Adamska-Patruno, E.; Goscik, J.; Czajkowski, P.; Maliszewska, K.; Ciborowski, M.; Golonko, A.; Wawrusiewicz-Kurylonek, N.; Citko, A.; Waszczeniuk, M.; Kretowski, A.; et al. The MC4R genetic variants are associated with lower visceral fat accumulation and higher postprandial relative increase in carbohydrate utilization in humans. Eur. J. Nutr. 2019, 58, 2929–2941. [Google Scholar] [CrossRef]
- Al-Eitan, L.N.; Jaradat, S.A.; Hulse, G.K.; Tay, G.K. Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent. BMC Res. Notes 2012, 5, 497. [Google Scholar] [CrossRef]
- Aliasghari, F.; Nazm, S.A.; Yasari, S.; Mahdavi, R.; Bonyadi, M. Associations of the ANKK1 and DRD2 gene polymorphisms with overweight, obesity and hedonic hunger among women from the Northwest of Iran. Eat. Weight Disord. 2021, 26, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Landgren, S.; Berglund, K.; Jerlhag, E.; Fahlke, C.; Balldin, J.; Berggren, U.; Zetterberg, H.; Blennow, K.; Engel, J.A. Reward-Related Genes and Personality Traits in Alcohol-Dependent Individuals: A Pilot Case Control Study. Neuropsychobiology 2011, 64, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Aroche, A.P.; Rovaris, D.L.; Grevet, E.H.; Stolf, A.R.; Sanvicente-Vieira, B.; Kessler, F.H.P.; von Diemen, L.; Grassi-Oliveira, R.; Bau, C.H.D.; Schuch, J.B. Association of CHRNA5 Gene Variants with Crack Cocaine Addiction. NeuroMolecular Med. 2020, 22, 384–390. [Google Scholar] [CrossRef]
- Avsar, O.; Kuskucu, A.; Sancak, S.; Genc, E. Are dopaminergic genotypes risk factors for eating behavior and obesity in adults? Neurosci. Lett. 2017, 654, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Vollstädt-Klein, S.; Kirsch, M.; Hoffmann, S.; Jorde, A.; Frank, J.; Charlet, K.; Beck, A.; Heinz, A.; Walter, H.; et al. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: A functional imaging study in alcohol dependent subjects. Eur. Neuropsychopharmacol. 2015, 25, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Batel, P.; Houchi, H.; Daoust, M.; Ramoz, N.; Naassila, M.; Gorwood, P. A Haplotype of the DRD1 Gene Is Associated with Alcohol Dependence. Alcohol. Clin. Exp. Res. 2008, 32, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Beuten, J.; Payne, T.J.; Ma, J.Z.; Li, M.D. Significant Association of Catechol-O-Methyltransferase (COMT) Haplotypes with Nicotine Dependence in Male and Female Smokers of Two Ethnic Populations. Neuropsychopharmacology 2006, 31, 675–684. [Google Scholar] [CrossRef]
- Beuten, J.; Ma, J.Z.; Lou, X.; Payne, T.J.; Li, M.D. Association analysis of the protein phosphatase 1 regulatory subunit 1B (PPP1R1B) gene with nicotine dependence in European- and African-American smokers. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, I.C.; Ota, V.K.; Mazzotti, D.R.; Wscieklica, T.; Conte, R.; Galduróz, J.C.F.; Varela, P.; Pesquero, J.B.; Souza-Formigoni, M.L.O. Association between polymorphism in gene related to the dopamine circuit and motivations for drinking in patients with alcohol use disorder. Psychiatry Res. 2021, 295, 113563. [Google Scholar] [CrossRef]
- Carr, K.A.; Lin, H.; Fletcher, K.D.; Sucheston, L.; Singh, P.K.; Salis, R.J.; Erbe, R.W.; Faith, M.S.; Allison, D.B.; Stice, E.; et al. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI. Behav. Neurosci. 2014, 127, 387–399. [Google Scholar] [CrossRef]
- Clarke, T.-K.; Weiss, A.R.D.; Ferarro, T.N.; Kampman, K.M.; Dackis, C.A.; Pettinati, H.M.; O’Brien, C.P.; Oslin, D.W.; Lohoff, F.W.; Berrettini, W.H. The Dopamine Receptor D2 (DRD2) SNP rs1076560 is Associated with Opioid Addiction. Ann. Hum. Genet. 2014, 78, 33–39. [Google Scholar] [CrossRef]
- Junior, F.C.d.S.; Araujo, R.M.L.; Sarmento, A.S.C.; de Carvalho, M.M.; Fernandes, H.F.; Yoshioka, F.K.N.; Pinto, G.R.; Motta, F.J.N.; Canalle, R. The association of A-1438G and T102C polymorphisms in HTR2A and 120 bp duplication in DRD4 with alcoholic dependence in a northeastern Brazilian male population. Gene Rep. 2020, 21, 100889. [Google Scholar] [CrossRef]
- Doehring, A.; von Hentig, N.; Graff, J.; Salamat, S.; Schmidt, M.; Geisslinger, G.; Harder, S.; Lötsch, J. Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet. Genom. 2009, 19, 407–414. [Google Scholar] [CrossRef]
- Fedorenko, O.Y.; Mikhalitskaya, E.V.; Toshchakova, V.A.; Loonen, A.J.M.; Bokhan, N.A.; Ivanova, S.A. Association of PIP4K2A Polymorphisms with Alcohol Use Disorder. Genes 2021, 12, 1642. [Google Scholar] [CrossRef]
- Fehr, C.; Sommerlad, D.; Sander, T.; Anghelescu, I.; Dahmen, N.; Szegedi, A.; Mueller, C.; Zill, P.; Soyka, M.; Preuss, U.W. Association of VMAT2 gene polymorphisms with alcohol dependence. J. Neural Transm. 2013, 120, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez-Castillo, N.; Ribasés, M.; Roncero, C.; Casas, M.; Gonzalvo, B.; Cormand, B. Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatr. Genet. 2010, 20, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez-Castillo, N.; Roncero, C.; Grau-Lopez, L.; Barral, C.; Prat, G.; Rodriguez-Cintas, L.; Sánchez-Mora, C.; Gratacòs, M.; Ramos-Quiroga, J.; Casas, M.; et al. Association study of 37 genes related to serotonin and dopamine neurotransmission and neurotrophic factors in cocaine dependence. Genes Brain Behav. 2013, 12, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.M.; Gerber, A.L.; Cadet, J.L.; Beutler, E.; Sipe, J.C. The fatty acid amide hydrolase 385 A/A (P129T) variant: Haplotype analysis of an ancient missense mutation and validation of risk for drug addiction. Hum. Genet. 2006, 120, 581–588. [Google Scholar] [CrossRef]
- Ge, L.; Wu, H.-Y.; Pan, S.-L.; Huang, L.; Sun, P.; Liang, Q.-H.; Pang, G.-F.; Lv, Z.-P.; Hu, C.-Y.; Liu, C.-W.; et al. COMT Val158Met polymorphism is associated with blood pressure and lipid levels in general families of Bama longevous area in China. Int. J. Clin. Exp. Pathol. 2015, 8, 15055–15064. [Google Scholar]
- Gold, A.B.; Wileyto, E.P.; Lori, A.; Conti, D.; Cubells, J.F.; Lerman, C. Pharmacogenetic Association of the Galanin Receptor (GALR1) SNP rs2717162 with Smoking Cessation. Neuropsychopharmacology 2012, 37, 1683–1688. [Google Scholar] [CrossRef]
- Hall, K.T.; Nelson, C.P.; Davis, R.B.; Buring, J.E.; Kirsch, I.; Mittleman, M.A.; Loscalzo, J.; Samani, N.J.; Ridker, P.M.; Kaptchuk, T.J.; et al. Polymorphisms in Catechol-O-methyltransferase Modify Treatment Effects of Aspirin on Risk of Cardiovascular Disease Kathryn. Arter. Thromb Vasc Biol. 2014, 23, 1–7. [Google Scholar]
- Hall, K.T.; Jablonski, K.A.; Chen, L.; Harden, M.; Tolkin, B.R.; Kaptchuk, T.J.; Bray, G.A.; Ridker, P.M.; Florez, J.C.; Diabetes Prevention Program Research Group; et al. Catechol-O-methyltransferase association with hemoglobin A1c. Metabolism 2016, 65, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Harrell, P.T.; Lin, H.-Y.; Park, J.Y.; Blank, M.D.; Drobes, D.J.; Evans, D.E. Dopaminergic genetic variation moderates the effect of nicotine on cigarette reward. Psychopharmacol. 2016, 233, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Payne, T.J.; Ma, J.Z.; Beuten, J.; Dupont, R.T.; Inohara, N.; Li, M.D. Significant Association of ANKK1 and Detection of a Functional Polymorphism with Nicotine Dependence in an African-American Sample. Neuropsychopharmacology 2009, 34, 319–330. [Google Scholar] [CrossRef]
- Johnstone, E.C.; Yudkin, P.; Griffiths, S.E.; Fuller, A.; Murphy, M.; Walton, R. The dopamine D2 receptor C32806T polymorphism (DRD2 Taq1A RFLP) exhibits no association with smoking behaviour in a healthy UK population. Addict. Biol. 2004, 9, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Joshua, W.B. Genetic Influences on the Human Mesolimbic Dopamine Reward System. Hilos Tensados 2010, 1, 1–476. [Google Scholar]
- Kaminskaite, M.; Jokubka, R.; Janaviciute, J.; Lelyte, I.; Sinkariova, L.; Pranckeviciene, A.; Borutaite, V.; Bunevicius, A. Epistatic effect of Ankyrin repeat and kinase domain containing 1–Dopamine receptor D2 and catechol-o-methyltransferase single nucleotide polymorphisms on the risk for hazardous use of alcohol in Lithuanian population. Gene 2021, 765, 145107. [Google Scholar] [CrossRef]
- Ko, M.K.C.; Ikeda, S.; Mieno-Naka, M.; Arai, T.A.T.; Zaidi, S.A.H.; Sato, N.; Muramatsu, M.; Sawabe, M. Association of COMT Gene Polymorphisms with Systemic Atherosclerosis in Elderly Japanese. J. Atheroscler. Thromb. 2012, 19, 552–558. [Google Scholar] [CrossRef]
- Koijam, A.S.; Hijam, A.C.; Singh, A.S.; Jaiswal, P.; Mukhopadhyay, K.; Rajamma, U.; Haobam, R. Association of Dopamine Transporter Gene with Heroin Dependence in an Indian Subpopulation from Manipur. J. Mol. Neurosci. 2021, 71, 122–136. [Google Scholar] [CrossRef]
- Kring, S.I.I.; Werge, T.; Holst, C.; Toubro, S.; Astrup, A.; Hansen, T.; Pedersen, O.; Sørensen, T.I.A. Polymorphisms of Serotonin Receptor 2A and 2C Genes and COMT in Relation to Obesity and Type 2 Diabetes. PLoS ONE 2009, 4, e6696. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Yeh, Y.-W.; Chen, C.-Y.; Huang, C.-C.; Chen, T.-Y.; Yen, C.-H.; Liang, C.-S.; Ho, P.-S.; Lu, R.-B.; Huang, S.-Y. Novelty seeking mediates the effect of DRD3 variation on onset age of amphetamine dependence in Han Chinese population. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, M.; Chmielowiec, J.; Chmielowiec, K.; Suchanecka, A.; Masiak, J.; Michałowska-Sawczyn, M.; Mroczek, B.; Mierzecki, A.; Ciechanowicz, I.; Grzywacz, A. Significant association of DRD2 and ANKK1 genes with rural heroin dependence and relapse in men. J. Neurol. Sci. 2020, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Långberg, E.-C.; Ahmed, M.S.; Efendic, S.; Gu, H.F.; Östenson, C.-G. Genetic association of adrenergic receptor alpha 2A with obesity and type 2 diabetes. Obesity 2013, 21, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Randesi, M.; da Rosa, J.C.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Overlapping Dopaminergic Pathway Genetic Susceptibility to Heroin and Cocaine Addictions in African Americans. Ann. Hum. Genet. 2015, 79, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shao, C.; Zhang, D.; Zhao, M.; Lin, L.; Yan, P.; Xie, Y.; Jiang, K.; Jin, L. The effect of dopamine D2, D5 receptor and transporter (SLC6A3) polymorphisms on the cue-elicited heroin craving in Chinese. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141B, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiao, X.; Yin, F.; Guo, H.; Huang, X.; Lai, J.; Wei, S. A population-based study of four genes associated with heroin addiction in Han Chinese. PLoS ONE 2016, 11, e0163668. [Google Scholar] [CrossRef]
- Lind, P.A.; Eriksson, C.P.; Wilhelmsen, K.C. Association between harmful alcohol consumption behavior and dopamine transporter (DAT1) gene polymorphisms in a male Finnish population. Psychiatr. Genet. 2009, 19, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Lohoff, F.W.; Bloch, P.J.; Ferraro, T.N.; Berrettini, W.H.; Pettinati, H.M.; Dackis, C.A.; O’brien, C.P.; Kampman, K.M.; Oslin, D.W. Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence. Neurosci. Lett. 2009, 453, 199–203. [Google Scholar] [CrossRef]
- Ma, J.Z.; Beuten, J.; Payne, T.J.; Dupont, R.T.; Elston, R.C.; Li, M.D. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum. Mol. Genet. 2005, 14, 1691–1698. [Google Scholar] [CrossRef]
- Mattioni, J.; Vansteene, C.; Poupon, D.; Gorwood, P.; Ramoz, N. Associated and intermediate factors between genetic variants of the dopaminergic D2 receptor gene and harmful alcohol use in young adults. Addict. Biol. 2023, 28, e13269. [Google Scholar] [CrossRef]
- Mir, R.; Bhat, M.; Javid, J.; Jha, C.; Saxena, A.; Banu, S. Potential Impact of COMT-rs4680 G > A Gene Polymorphism in Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2018, 5, 38. [Google Scholar] [CrossRef]
- Mutschler, J.; Abbruzzese, E.; von der Goltz, C.; Dinter, C.; Mobascher, A.; Thiele, H.; Diaz-Lacava, A.; Dahmen, N.; Gallinat, J.; Majic, T.; et al. Lack of Association of a Functional Catechol-O-Methyltransferase Gene Polymorphism with Risk of Tobacco Smoking: Results from a Multicenter Case-Control Study. Nicotine Tob. Res. 2013, 15, 1322–1327. [Google Scholar] [CrossRef]
- Najafabadi, M.S.; Ohadi, M.; Joghataie, M.T.; Valaie, F.; Riazalhosseini, Y.; Mostafavi, H.; Mohammadbeigi, F.; Najmabadi, H. Association between the DRD2 A1 allele and opium addiction in the Iranian population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2005, 134B, 39–41. [Google Scholar] [CrossRef]
- Nelson, E.C.; Lynskey, M.T.; Heath, A.C.; Wray, N.; Agrawal, A.; Shand, F.L.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Schrage, A.J.; et al. ANKK1, TTC12, and NCAM1 Polymorphisms and Heroin Dependence–importance of considering drug exposure Elliot. JAMA Psychiatry 2014, 70, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Noble, E.; Ritchie, T.; Syndulko, K.; Jeor, S.; Fitch, R.; Brunner, R.; Sparkes, R. D2 dopamine receptor gene and cigarette smoking: A reward gene? Med. Hypotheses 1994, 42, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Du, J.; Jiang, H.; Fu, Y.; Chen, H.; Sun, H.; Wang, D.; Yu, S.; Zhao, M. The dopamine receptor D1 gene is associated with the length of interval between first heroin use and onset of dependence in Chinese Han heroin addicts. J. Neural Transm. 2013, 120, 1591–1598. [Google Scholar] [CrossRef]
- Perez de los Cobos, J.; Baiget, M.; Trujols, J.; Sinol, N.; Volpini, V.; Banuls, E.; Calafell, F.; Luquero, E.; del Rio, E.; Alvarez, E. Allelic and genotypic associations of DRD2 TaqI A polymorphism with heroin dependence in Spanish subjects: A case control study. Behav. Brain Funct. 2007, 3, 25. [Google Scholar] [CrossRef]
- do Prado-Lima, P.A.S.; Chatkin, J.M.; Taufer, M.; Oliveira, G.; Silveira, E.; Neto, C.A.; Haggstram, F.; Bodanese, L.D.; da Cruz, I.B.M. Polymorphism of 5HT2A serotonin receptor gene is implicated in smoking addiction. Am. J. Med. Genet. 2004, 128B, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Ragia, G.; Iordanidou, M.; Giannakopoulou, E.; Tavridou, A.; Manolopoulos, V.G. Association of DRD2 TaqIA and DβH -1021C>T Gene Polymorphisms with Smoking Initiation and their Interaction with Serotonergic System Gene Polymorphisms. Curr. Pharmacogenom. Pers. Med. 2013, 11, 110–117. [Google Scholar] [CrossRef]
- Ragia, G.; Veresies, I.; Veresie, L.; Veresies, K.; Manolopoulos, V.G. rs2832407C > A polymorphisms with alcohol DβH −1021C > T, OPRM1 A118G and GRIK1 Association study of DRD2 A2/A1, DRD3 Ser9Gly, dependence. Drug Metab. Pers. Ther. 2016, 31, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Schacht, J.P.; Im, Y.; Hoffman, M.; Voronin, K.E.; Book, S.W.; Anton, R.F. Effects of pharmacological and genetic regulation of COMT activity in alcohol use disorder: A randomized, placebo-controlled trial of tolcapone. Neuropsychopharmacology 2022, 47, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Huang, H.Y.; Hoffman, S.C.; Shugart, Y.Y.; Bolton, J.H.; Platz, E.A.; Helzlsouer, K.J.; Alberg, A.J. A Community-Based Study of Cigarette Smoking Behavior in Relation to Variation in Three Genes Involved in Dopamine Metabolism: Catechol-O-methyltransferase (COMT), Dopamine Beta-Hydroxylase (DBH) and Monoamine Oxidase-A (MAO-A). Prev. Med. 2009, 47, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Sipe, J.C.; Chiang, K.; Gerber, A.L.; Beutler, E.; Cravatt, B.F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl. Acad. Sci. USA 2002, 99, 8394–8399. [Google Scholar] [CrossRef] [PubMed]
- Spitta, G.; Fliedner, L.E.; Gleich, T.; Zindler, T.; Sebold, M.; Buchert, R.; Heinz, A.; Gallinat, J.; Friedel, E. Association between DRD2/ANKK1 TaqIA Allele Status and Striatal Dopamine D2/3 Receptor Availability in Alcohol Use Disorder. J. Integr. Neurosci. 2022, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Suchankova, P.; Yan, J.; Schwandt, M.L.; Stangl, B.L.; Caparelli, E.C.; Momenan, R.; Jerlhag, E.; Engel, J.A.; Hodgkinson, C.A.; Egli, M.; et al. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: Evidence from human genetic association studies and a mouse model of alcohol dependence. Transl. Psychiatry 2015, 5, e583. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chang, S.; Liu, Z.; Zhang, L.; Wang, F.; Yue, W.; Sun, H.; Ni, Z.; Chang, X.; Zhang, Y.; et al. Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence. Mol. Psychiatry 2021, 26, 1152–1161. [Google Scholar] [CrossRef]
- Tyndale, R.F.; Payne, J.I.; Gerber, A.L.; Sipe, J.C. The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: Studies of drug use and dependence in caucasians. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007, 144B, 660–666. [Google Scholar] [CrossRef]
- van der Mee, D.J.; Fedko, I.O.; Hottenga, J.-J.; Ehli, E.A.; VAN DER Zee, M.D.; Ligthart, L.; VAN Beijsterveldt, T.C.E.M.; Davies, G.E.; Bartels, M.; Landers, J.G.; et al. Dopaminergic Genetic Variants and Voluntary Externally Paced Exercise Behavior. Med. Sci. Sports Exerc. 2018, 50, 700–708. [Google Scholar] [CrossRef]
- Vereczkei, A.; Demetrovics, Z.; Szekely, A.; Sarkozy, P.; Antal, P.; Szilagyi, A.; Sasvari-Szekely, M.; Barta, C. Multivariate Analysis of Dopaminergic Gene Variants as Risk Factors of Heroin Dependence. PLoS ONE 2013, 8, e66592. [Google Scholar] [CrossRef]
- Voisey, J.; Swagell, C.D.; Hughes, I.P.; Lawford, B.R.; Young, R.M.; Morris, C.P. A novel SNP in COMT is associated with alcohol dependence but not opiate or nicotine dependence: A case control study. Behav. Brain Funct. 2011, 7, 51. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Zhang, Y.; Ding, Y.; Chen, Z.; Wang, L. A genetic variant near adaptor-related protein complex 2 alpha 2 subunit gene is associated with coronary artery disease in a Chinese population. BMC Cardiovasc. Disord. 2018, 18, 161. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chu, C.; Wang, Y.; Yang, Y.; Wang, Q.; Li, T.; Zhang, L.; Ma, X. Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict. Behav. 2012, 37, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xu, L.; Liu, H.; Chen, W.; Zhuang, D.; Zhang, J.; Duan, S.; Zhou, W. Positive association between −1021TT genotype of dopamine beta hydroxylase gene and progressive behavior of injection heroin users. Neurosci. Lett. 2013, 541, 258–262. [Google Scholar] [CrossRef]
- Xiu, L.; Lin, M.; Liu, W.; Kong, D.; Liu, Z.; Zhang, Y.; Ouyang, P.; Liang, Y.; Zhong, S.; Chen, C.; et al. Association of DRD3, COMT, and SLC6A4 Gene Polymorphisms with Type 2 Diabetes in Southern Chinese: A Hospital-Based Case-Control Study. Diabetes Technol. Ther. 2015, 17, 580–586. [Google Scholar] [CrossRef]
- Xu, K.; Lichtermann, D.; Lipsky, R.H.; Franke, P.; Liu, X.; Hu, Y.; Cao, L.; Schwab, S.G.; Wildenauer, D.B.; Bau, C.H.D.; et al. Association of Specific Haplotypes of D2 Dopamine ReceptorGene with Vulnerability to Heroin Dependence in 2 Distinct Populations. Arch. Gen. Psychiatry 2004, 61, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Liu, X.-M.; Sun, Y.-M.; Pan, S.-H. Genetic polymorphism c.1438A>G of the 5-HT2A receptor is associated with abdominal obesity in Chinese Northern Han population. Mol. Biol. Rep. 2009, 36, 91–95. [Google Scholar] [CrossRef]
- Yu, Y.; Panhuysen, C.; Kranzler, H.R.; Hesselbrock, V.; Rounsaville, B.; Weiss, R.; Brady, K.; Farrer, L.A.; Gelernter, J. Intronic variants in the dopa decarboxylase (DDC) gene are associated with smoking behavior in European-Americans and African-Americans. Hum. Mol. Genet. 2006, 15, 2192–2199. [Google Scholar] [CrossRef]
- Zain, M.; Awan, F.R.; Amir, S.; Baig, S.M. A case control association study of COMT gene polymorphism (I/D) with type 2 diabetes and its related factors in Pakistani Punjabi population. J. Diabetes Metab. Disord. 2015, 14, 40. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, C.-X.; Wen, Y.-C.; Wang, J.; Bi, J.; Zhao, Y.-L.; Wei, L.; Gao, C.-G.; Jia, W.; Li, S.-B. Dopamine D1 Receptor Gene Variation Modulates Opioid Dependence Risk by Affecting Transition to Addiction. PLoS ONE 2013, 8, e70805. [Google Scholar] [CrossRef]
- Anney, R.J.; Lotfi-Miri, M.; Olsson, C.A.; Reid, S.C.; Hemphill, S.A.; Patton, G.C. Variation in the gene coding for the M5 Muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: Evidence from a prospective population based cohort study of young adults. BMC Genet. 2007, 8, 46. [Google Scholar] [CrossRef]
- Ikemoto, S. Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res. Rev. 2007, 56, 27–78. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Wang, H.-L.; Li, X.; Ng, T.H.; Morales, M. Mesocorticolimbic Glutamatergic Pathway. J. Neurosci. 2011, 31, 8476–8490. [Google Scholar] [CrossRef]
- Tereshchenko, L.G.; Sotoodehnia, N.; Sitlani, C.M.; Ashar, F.N.; Kabir, M.; Biggs, M.L.; Morley, M.P.; Waks, J.W.; Soliman, E.Z.; Buxton, A.E.; et al. Genome-Wide Associations of Global Electrical Heterogeneity ECG Phenotype: The ARIC (Atherosclerosis Risk in Communities) Study and CHS (Cardiovascular Health Study). J. Am. Heart Assoc. 2018, 7, e008160. [Google Scholar] [CrossRef]
- Erdmann, J.; Kessler, T.; Venegas, L.M.; Schunkert, H. A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovasc. Res. 2018, 114, 1241–1257. [Google Scholar] [CrossRef]
- Adinoff, B. Neurobiologic Processes in Drug Reward and Addiction Bryon. Harv. Rev. Psychiatry 2004, 12, 305–320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merzah, M.; Natae, S.; Sándor, J.; Fiatal, S. Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes 2024, 15, 109. https://doi.org/10.3390/genes15010109
Merzah M, Natae S, Sándor J, Fiatal S. Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes. 2024; 15(1):109. https://doi.org/10.3390/genes15010109
Chicago/Turabian StyleMerzah, Mohammed, Shewaye Natae, János Sándor, and Szilvia Fiatal. 2024. "Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review" Genes 15, no. 1: 109. https://doi.org/10.3390/genes15010109
APA StyleMerzah, M., Natae, S., Sándor, J., & Fiatal, S. (2024). Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes, 15(1), 109. https://doi.org/10.3390/genes15010109