The Association between CDKAL1 Gene rs10946398 Polymorphism and Post-Transplant Diabetes in Kidney Allograft Recipients Treated with Tacrolimus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidson, J.A.; Wilkinson, A. New-onset diabetes after transplantation 2003 international consensus guidelines. Diabetes Care 2004, 3, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Y.; Li, F.; Sun, J.H.; Chi, Y.Y.; Yin, H.S.; Liu, S.Q.; Mei, Y.H. Mechanisms of diabetes mellitus induced with FK506 in SD rats models. Immunopharmacol. Immunotoxicol. 2009, 31, 675–681. [Google Scholar] [CrossRef]
- Reisaeter, A.V.; Hartmann, A. Risk factors and incidence of posttransplant diabetes mellitus. Transplant. Proc. 2001, 33 (Suppl. S5A), 8S–18S. [Google Scholar] [CrossRef]
- Parikh, C.R.; Klem, P.; Wong, C.; Yalavarthy, R. Chan Obesity as an independent predictor of postransplant diabetes mellitus. Transplant. Proc. 2003, 35, 2922–2926. [Google Scholar]
- Øzbay, L.A.; Smidt, K.; Mortensen, D.M.; Carstens, J.; Jørgensen, K.A.; Rungby, J. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E β-cells. Br. J. Pharmacol. 2011, 162, 136–146. [Google Scholar]
- Xu, C.; Niu, Y.-J.; Liu, X.-J.; Teng, Y.-Q.; Li, C.-F.; Wang, H.-Y.; Yin, J.-P.; Wang, L.-T.; Shen, Z.-Y. Tacrolimus reversibly reduces insulin secretion, induces insulin resistance, and causes islet cell damage in rats. Int. J. Clin. Pharmacol. Ther. 2014, 52, 620–627. [Google Scholar] [CrossRef]
- Song, C.; Wang, M.; Fang, H.; Gong, W.; Mao, D.; Ding, C.; Fu, Q.; Feng, G.; Chen, Z.; Ma, Y.; et al. Effects of variants of 50 genes on diabetes risk among the Chinese population born in the early 1960s. Diabetes 2019, 11, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Jiang, Z.; Hu, N. Association between Genetic Polymorphisms and Risk of Kidney Posttransplant Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int. J. Clin. Pract. 2022, 2022, 7140024. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Ashmawy, I. Common variants in TCF7L2 and CDKAL1 genes and risk of type 2 diabetes mellitus in Egyptians. J. Genet. Eng. Biotechnol. 2016, 14, 247–251. [Google Scholar]
- Amin, U.S.M.; Parvez, N.; Rahman, T.A.; Hasan, R.; Das, K.C.; Jahan, S.; Hasanat, M.A.; Seraj, Z.I.; Salimullah, M. CDKAL1 gene rs7756992 A/G and rs7754840 G/C polymorphisms are associated with gestational diabetes mellitus in a sample of Bangladeshi population: Implication for future T2DM prophylaxis. Diabetol. Metab. Syndr. 2022, 14, 18. [Google Scholar] [CrossRef]
- Liang, J.; Pei, Y.; Liu, X.; Qiu, Q.; Sun, Y.; Zhu, Y.; Yang, M.; Qi, L. The CDKAL1 gene is associated with impaired insulin secretion and glucose-related traits: The Cardiometabolic Risk in Chinese (CRC) study. Clin. Endocrinol. 2015, 83, 651–655. [Google Scholar]
- Iynedjian, B.P. Molecular Physiology of Mammalian Glucokinase. Cell. Mol. Life Sci. 2009, 66, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Tarnowski, M.; Malinowski, D.; Pawlak, K.; Dziedziejko, V.; Safranow, K.; Pawlik, A. GCK, GCKR, FADS1, DGKB/TMEM195 and CDKAL1 Gene Polymorphisms in Women with Gestational Diabetes. Can. J. Diabetes 2017, 41, 372–379. [Google Scholar] [CrossRef]
- Orho-Melander, M.; Melander, O.; Guiducci, C.; Perez-Martinez, P.; Corella, D.; Roos, C.; Tewhey, R.; Rieder, M.J.; Hall, J.; Abecasis, G.; et al. Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations. Diabetes 2008, 57, 3112–3121. [Google Scholar] [CrossRef] [Green Version]
- Ansari, N.; Ramachandran, V.; Mohamad, N.A.; Salim, E.; Ismail, P.; Hazmi, M.; Mat, L.N.I. Association of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) Gene Polymorphisms with Type 2 Diabetes among Malay Ethnics. Glob. Med. Genet. 2023, 10, 012–018. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chang, P.-F.; Chang, M.-H.; Ni, Y.-H. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals. Am. J. Clin. Nutr. 2014, 99, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Anghebem-Oliveira, M.I.; Webber, S.; Alberton, D.; de Souza, E.M.; Klassen, G.; Picheth, G.; de Moraes Rego, F.G. The GCKR Gene Polymorphism rs780094 is a Risk Factor for Gestational Diabetes in a Brazilian Population. J. Clin. Lab. Anal. 2017, 31, e22035. [Google Scholar] [CrossRef]
- Sailer, S.; Keller, M.A.; Werner, E.R.; Watschinger, K. The Emerging Physiological Role of AGMO 10 Years after Its Gene Identification. Life 2021, 11, 88. [Google Scholar] [CrossRef]
- Fischer, C.; Wilken-Schmitz, A.; Hernandez-Olmos, V.; Proschak, E.; Stark, H.; Fleming, I.; Weigert, A.; Thurn, M.; Hofmann, M.; Werner, E.R.; et al. AGMO Inhibitor Reduces 3T3-L1 Adipogenesis. Cells 2021, 10, 1081. [Google Scholar] [CrossRef]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Boesgaard, T.W.; Meta-Analysis of Glucose and Insulin-Related Trait Consortium (MAGIC); Grarup, N.; Jørgensen, T.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated β cell function in middle-aged Danish people. Diabetologia 2010, 53, 1647–1655. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.W.; Chung, M.; Cho, S.B. Meta-analysis of genome-wide association study of homeostasis model assessment β cell function and insulin resistance in an East Asian population and the European results. Mol. Genet. Genom. 2014, 289, 1247–1255. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Zhao, J.; Cui, G.; Chen, C.; Ding, H.; Wang, D.W. Large scale meta-analyses of fasting plasma glucose raising variants in GCK, GCKR, MTNR1B and G6PC2 and their impacts on type 2 diabetes mellitus risk. PLoS ONE 2013, 8, e67665. [Google Scholar] [CrossRef]
- Malinowski, D.; Zawadzka, M.; Safranow, K.; Droździk, M.; Pawlik, A. SELL and GUCY1A1 Gene Polymorphisms in Patients with Unstable Angina. Biomedicines 2022, 10, 2494. [Google Scholar] [CrossRef]
- Pereira, M.J.; Palming, J.; Rizell, M.; Aureliano, M.; Carvalho, E.; Svensson, M.K.; Eriksson, J.W. Cyclosporine A and Tacrolimus Reduce the Amount of GLUT4 at the Cell Surface in Human Adipocytes: Increased Endocytosis as a Potential Mechanism for the Diabetogenic Effects of Immunosuppressive Agents. J. Clin. Endocrinol. Metab. 2014, 99, E1885–E1894. [Google Scholar] [CrossRef] [Green Version]
- Chitnis, S.D.; Ogasawara, K.; Schniedewind, B.; Gohh, R.Y.; Christians, U.; Akhlaghi, F. Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism. Xenobiotica 2013, 43, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Ihm, C.-G.; Lee, T.W.; Lee, S.H.; Jeong, K.H.; Moon, J.Y.; Chung, J.-H.; Kim, S.K.; Kim, Y.H. Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantation 2012, 93, 900–907. [Google Scholar] [CrossRef]
- Narendran, A.; Vangaveti, S.; Ranganathan, S.V.; Eruysal, E.; Craft, M.; Alrifai, O.; Chua, F.Y.; Sarachan, K.; Litwa, B.; Ramachandran, S.; et al. Silencing of the tRNA Modification Enzyme Cdkal1 Effects Functional Insulin Synthesis in NIT-1 Cells: tRNALys3 Lacking ms2- (ms2t6A37) is Unable to Establish Sufficient Anticodon:Codon Interactions to Decode the Wobble Codon AAG. Front. Mol. Biosci. 2021, 7, 584228. [Google Scholar] [CrossRef]
- Palmer, C.J.; Bruckner, R.J.; Paulo, J.A.; Kazak, L.; Long, J.Z.; Mina, A.I.; Deng, Z.; LeClair, K.B.; Hall, J.A.; Hong, S.; et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol. Metab. 2017, 6, 1212–1225. [Google Scholar] [CrossRef]
- Watanabe, S.; Wei, F.Y.; Tomizawa, K. Functional characterization of Cdkal1, a risk factor of type 2 diabetes, and the translational opportunities. Drug Discov. Today Dis. Models 2013, 10, e65–e69. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Dehwah, M.S.; Wang, M.; Huang, Q.-Y. CDKAL1 and type 2 diabetes: A global meta-analysis. Genet. Mol. Res. 2010, 9, 1109–1120. [Google Scholar] [CrossRef]
- Benson, K.A.; Maxwell, A.P.; McKnight, A.J. A HuGE Review and Meta-Analyses of Genetic Associations in New Onset Diabetes after Kidney Transplantation. PLoS ONE 2016, 11, e0147323. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.S.; Kim, M.S.; Kim, C.H.; Nam, C.M.; Han, S.J.; Hur, K.Y.; Ahn, C.W.; Cha, B.S.; Kim, S.I.; Lee, H.C.; et al. Association of common type 2 diabetes risk gene variants and posttransplantation diabetes mellitus in renal allograft recipients in Korea. Transplantation 2009, 88, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Langsford, D.; Dwyer, K. Dysglycemia after renal transplantation: Definition, pathogenesis, outcomes and implications for management. World J. Diabetes 2015, 6, 1132–1151. [Google Scholar] [CrossRef]
- Helvaci, Ö.; Korucu, B.; Yeter, H.H.; Gönen, S.; Helvaci, B.C.; Sanisoglu, Y.; Bali, M.; Güz, G. TCF7L2 (rs7903146) But Not CDKAL1 (rs7754840) Gene Polymorphisms Increase the Risk of New-Onset Diabetes After Kidney Transplant. Exp. Clin. Transplant. 2021. [Google Scholar] [CrossRef]
Genotype/Allele | No PTDM | PTDM | p ^ | OR (95% CI) | p ^ | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
CDKAL1 rs10946398 | ||||||||
AA | 90 | 54.22% | 16 | 45.71% | 0.12 | CC + AC vs. AA | 1.41 (0.68–2.92) | 0.36 |
AC | 59 | 35.54% | 11 | 31.43% | CC vs. AC + AA | 2.60 (1.02–6.61) | 0.040 | |
CC | 17 | 10.24% | 8 | 22.86% | CC vs. AA | 2.65 (0.98–7.16) | 0.049 | |
AC vs. AA | 1.05 (0.46–2.42) | 0.91 | ||||||
CC vs. AC | 2.52 (0.86–7.27) | 0.081 | ||||||
A | 239 | 71.99% | 43 | 61.43% | C vs. A | 1.61 (0.94–2.76) | 0.079 | |
C | 93 | 28.01% | 27 | 38.57% |
Independent Variables | OR (95% CI) | p |
---|---|---|
Sex (male vs. female) | 0.52 (0.23–1.17) | 0.11 |
Recipient’s age (years) | 1.04 (1.01–1.08) | 0.019 |
Recipient’s BMI (kg/m2) | 1.14 (0.99–1.30) | 0.059 |
CDKAL1 rs10946398 (CC vs. AC + AA) (recessive model) | 3.01 (1.06–8.53) | 0.037 |
Genotype/Allele | No PTDM | PTDM | p ^ | OR (95% CI) | p ^ | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
GCK rs1799884 | ||||||||
CC | 125 | 75.30% | 25 | 71.43% | 0.50 | TT + CT vs. CC | 1.22 (0.54–2.75) | 0.63 |
CT | 37 | 22.29% | 10 | 28.57% | TT vs. CT + CC | 0.00 (-) | 0.35 | |
TT | 4 | 2.41% | 0 | 0.00% | TT vs. CC | 0.00 (-) | 0.37 | |
CT vs. CC | 1.35 (0.60–3.07) | 0.47 | ||||||
TT vs. CT | 0.00 (-) | 0.30 | ||||||
C | 287 | 86.45% | 60 | 85.71% | T vs. C | 1.06 (0.51–2.23) | 0.87 | |
T | 45 | 13.55% | 10 | 14.29% | ||||
GCKR rs780094 | ||||||||
CC | 66 | 39.76% | 9 | 25.71% | 0.19 | TT + CT vs. CC | 1.91 (0.84–4.33) | 0.12 |
CT | 68 | 40.96% | 20 | 57.14% | TT vs. CT + CC | 0.87 (0.33–2.26) | 0.77 | |
TT | 32 | 19.28% | 6 | 17.14% | TT vs. CC | 1.38 (0.45–4.20) | 0.57 | |
CT vs. CC | 2.16 (0.92–5.08) | 0.074 | ||||||
TT vs. CT | 0.64 (0.23–1.74) | 0.38 | ||||||
C | 200 | 60.24% | 38 | 54.29% | T vs. C | 1.28 (0.76–2.14) | 0.36 | |
T | 132 | 39.76% | 32 | 45.71% |
Genotype/Allele | No PTDM | PTDM | p ^ | OR (95% CI) | p ^ | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
DGKB/TMEM195 rs2191349 | ||||||||
TT | 47 | 28.31% | 13 | 37.14% | 0.48 | GG + GT vs. TT | 0.67 (0.31–1.44) | 0.30 |
GT | 78 | 46.99% | 16 | 45.71% | GG vs. GT + TT | 0.63 (0.24–1.62) | 0.34 | |
GG | 41 | 24.70% | 6 | 17.14% | GG vs. TT | 0.53 (0.18–1.52) | 0.23 | |
GT vs. TT | 0.74 (0.33–1.68) | 0.47 | ||||||
GG vs. GT | 0.71 (0.26–1.96) | 0.51 | ||||||
T | 172 | 51.81% | 42 | 60.00% | G vs. T | 0.72 (0.42–1.21) | 0.21 | |
G | 160 | 48.19% | 28 | 40.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedziejko, V.; Safranow, K.; Kijko-Nowak, M.; Sieńko, J.; Malinowski, D.; Szumilas, K.; Pawlik, A. The Association between CDKAL1 Gene rs10946398 Polymorphism and Post-Transplant Diabetes in Kidney Allograft Recipients Treated with Tacrolimus. Genes 2023, 14, 1595. https://doi.org/10.3390/genes14081595
Dziedziejko V, Safranow K, Kijko-Nowak M, Sieńko J, Malinowski D, Szumilas K, Pawlik A. The Association between CDKAL1 Gene rs10946398 Polymorphism and Post-Transplant Diabetes in Kidney Allograft Recipients Treated with Tacrolimus. Genes. 2023; 14(8):1595. https://doi.org/10.3390/genes14081595
Chicago/Turabian StyleDziedziejko, Violetta, Krzysztof Safranow, Mirosława Kijko-Nowak, Jerzy Sieńko, Damian Malinowski, Kamila Szumilas, and Andrzej Pawlik. 2023. "The Association between CDKAL1 Gene rs10946398 Polymorphism and Post-Transplant Diabetes in Kidney Allograft Recipients Treated with Tacrolimus" Genes 14, no. 8: 1595. https://doi.org/10.3390/genes14081595
APA StyleDziedziejko, V., Safranow, K., Kijko-Nowak, M., Sieńko, J., Malinowski, D., Szumilas, K., & Pawlik, A. (2023). The Association between CDKAL1 Gene rs10946398 Polymorphism and Post-Transplant Diabetes in Kidney Allograft Recipients Treated with Tacrolimus. Genes, 14(8), 1595. https://doi.org/10.3390/genes14081595