Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistical Analysis and Visualization
3. Results
3.1. Comparison of LHON Onset between the Pre-COVID-19 Group and the COVID-19 Group
3.2. Socio-Demographic Characteristics of Study Patients
3.3. COVID-19-Related Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu-Wai-Man, P.; Griffiths, P.G.; Chinnery, P.F. Mitochondrial Optic Neuropathies—Disease Mechanisms and Therapeutic Strategies. Prog. Retin. Eye Res. 2011, 30, 81–114. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, S.; Xiao, X.; Guo, X.; Zhang, Q. Molecular Epidemiology of Mtdna Mutations in 903 Chinese Families Suspected with Leber Hereditary Optic Neuropathy. J. Hum. Genet. 2006, 51, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Nikoskelainen, E.K.; Savontaus, M.L.; Wanne, O.P.; Katila, M.J.; Nummelin, K.U. Leber’s Hereditary Optic Neuroretinopathy, a Maternally Inherited Disease. A Genealogic Study in Four Pedigrees. Arch. Ophthalmol. 1987, 105, 665–671. [Google Scholar] [CrossRef]
- Newman, N.J.; Lott, M.T.; Wallace, D.C. The Clinical Characteristics of Pedigrees of Leber’s Hereditary Optic Neuropathy with the 11778 Mutation. Am. J. Ophthalmol. 1991, 111, 750–762. [Google Scholar] [CrossRef]
- Johns, D.R.; Smith, K.H.; Miller, N.R.; Sulewski, M.E.; Bias, W.B. Identical Twins Who Are Discordant for Leber’s Hereditary Optic Neuropathy. Arch. Ophthalmol. 1993, 111, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, J.; Koenig, S.; Catarino, C.; Schaumberger, M.M.; Schworm, B.; Priglinger, S.G.; Rudolph, G.; von Livonius, B.; Klopstock, T.; Priglinger, C.S. Childhood Versus Early-Teenage Onset Leber’s Hereditary Optic Neuropathy: Visual Prognosis and Capacity for Recovery. Br. J. Ophthalmol. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Ma, M.; Xiong, S.; Zhao, S.; Zheng, Z.; Sun, T.; Li, C. COVID-19 Home Quarantine Accelerated the Progression of Myopia in Children Aged 7 to 12 Years in China. Invest. Ophthalmol. Vis. Sci. 2021, 62, 37. [Google Scholar] [CrossRef]
- Valabhji, J.; Barron, E.; Gorton, T.; Bakhai, C.; Kar, P.; Young, B.; Khunti, K.; Holman, N.; Sattar, N.; Wareham, N.J. Associations between Reductions in Routine Care Delivery and Non-COVID-19-Related Mortality in People with Diabetes in England During the COVID-19 Pandemic: A Population-Based Parallel Cohort Study. Lancet Diabetes Endocrinol. 2022, 10, 561–570. [Google Scholar] [CrossRef]
- Hui, L.; Marzan, M.B.; Potenza, S.; Rolnik, D.L.; Pritchard, N.; Said, J.M.; Palmer, K.R.; Whitehead, C.L.; Sheehan, P.M.; Ford, J.; et al. Increase in Preterm Stillbirths in Association with Reduction in Iatrogenic Preterm Births During COVID-19 Lockdown in Australia: A Multicenter Cohort Study. Am. J. Obs. Gynecol. 2022, 227, 491.e1–491.e17. [Google Scholar] [CrossRef]
- Zaslavsky, K.; Margolin, E.A. Leber’s Hereditary Optic Neuropathy in Older Individuals Because of Increased Alcohol Consumption During the COVID-19 Pandemic. J. Neuroophthalmol. 2021, 41, 316–320. [Google Scholar] [CrossRef]
- Roberts, N.J.; Vogelstein, J.T.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. The Predictive Capacity of Personal Genome Sequencing. Sci. Transl. Med. 2012, 4, 133ra58. [Google Scholar] [CrossRef]
- Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.; et al. Effect of Non-Pharmaceutical Interventions to Contain COVID-19 in China. Nature 2020, 585, 410–413. [Google Scholar] [CrossRef]
- Corona, E.; Chen, R.; Sikora, M.; Morgan, A.A.; Patel, C.J.; Ramesh, A.; Bustamante, C.D.; Butte, A.J. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration. PLoS Genet. 2013, 9, e1003447. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial Dysfunction as a Cause of Optic Neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Gene-Environment Interactions in Leber Hereditary Optic Neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, N.; Chu, W.K.; Cheung, C.Y.; Tang, S.; Li, F.F.; Chen, L.J.; Kam, K.W.; Young, A.L.; Ip, P.; et al. Exposure to Secondhand Smoke in Children Is Associated with a Thinner Retinal Nerve Fiber Layer: The Hong Kong Children Eye Study. Am. J. Ophthalmol. 2021, 223, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheung, S.S.L.; Chan, H.N.; Zhang, Y.; Wang, Y.M.; Yip, B.H.; Kam, K.W.; Yu, M.; Cheng, C.Y.; Young, A.L.; et al. Myopia Incidence and Lifestyle Changes among School Children During the COVID-19 Pandemic: A Population-Based Prospective Study. Br. J. Ophthalmol. 2021, 106, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Griffiths, P.G.; Brown, D.T.; Howell, N.; Turnbull, D.M.; Chinnery, P.F. The Epidemiology of Leber Hereditary Optic Neuropathy in the North East of England. Am. J. Hum. Genet. 2003, 72, 333–339. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Dai, L.; Huang, X.; Yu, T.; Yin, Z.; Bai, Y. Genetic Analysis in a Cohort of Patients with Hereditary Optic Neuropathies in Southwest of China. Mitochondrion 2019, 46, 327–333. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Leonhardt, M.; Yu-Wai-Man, P.; Kirkman, M.A.; Korsten, A.; De Coo, I.F.; Chinnery, P.F.; Klopstock, T. Leber’s Hereditary Optic Neuropathy with Late Disease Onset: Clinical and Molecular Characteristics of 20 Patients. Orphanet. J. Rare. Dis. 2014, 9, 158. [Google Scholar] [CrossRef]
- Tsao, K.; Aitken, P.A.; Johns, D.R. Smoking as an Aetiological Factor in a Pedigree with Leber’s Hereditary Optic Neuropathy. Br. J. Ophthalmol. 1999, 83, 577–581. [Google Scholar] [CrossRef]
- Yuan, N.; Li, J.; Tang, S.; Li, F.F.; Lee, C.O.; Ng, M.P.H.; Cheung, C.Y.; Tham, C.C.; Pang, C.P.; Chen, L.J.; et al. Association of Secondhand Smoking Exposure with Choroidal Thinning in Children Aged 6 to 8 Years: The Hong Kong Children Eye Study. JAMA Ophthalmol. 2019, 137, 1406–1414. [Google Scholar] [CrossRef]
- Lois, N.; Abdelkader, E.; Reglitz, K.; Garden, C.; Ayres, J.G. Environmental Tobacco Smoke Exposure and Eye Disease. Br. J. Ophthalmol. 2008, 92, 1304–1310. [Google Scholar] [CrossRef]
- Etzel, R.A. Indoor and Outdoor Air Pollution: Tobacco Smoke, Moulds and Diseases in Infants and Children. Int. J. Hyg. Env. Health 2007, 210, 611–616. [Google Scholar] [CrossRef]
- Chen, Y.J.; Qin, G.; Chen, J.; Xu, J.L.; Feng, D.Y.; Wu, X.Y.; Li, X. Comparison of Face-Touching Behaviors before and During the Coronavirus Disease 2019 Pandemic. JAMA Netw. Open. 2020, 3, e2016924. [Google Scholar] [CrossRef]
- Zheng, C.; Poon, E.T.; Wan, K.; Dai, Z.; Wong, S.H. Effects of Wearing a Mask During Exercise on Physiological and Psychological Outcomes in Healthy Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2022, 53, 125–150. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Q. Hypoxia Activation of Mitophagy and Its Role in Disease Pathogenesis. Antioxid. Redox Signal. 2015, 22, 1032–1046. [Google Scholar] [CrossRef]
- Douglas, J.D.M.; McLean, N.; Horsley, C.; Higgins, G.; Douglas, C.M.; Robertson, E. COVID-19: Smoke Testing of Surgical Mask and Respirators. Occup. Med. 2020, 70, 556–563. [Google Scholar] [CrossRef]
- Mateus, C.; d’Almeida, O.C.; Reis, A.; Silva, E.; Castelo-Branco, M. Genetically Induced Impairment of Retinal Ganglion Cells at the Axonal Level Is Linked to Extrastriate Cortical Plasticity. Brain Struct. Funct. 2016, 221, 1767–1780. [Google Scholar] [CrossRef]
- Vasalauskaite, A.; Morgan, J.E.; Sengpiel, F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb. Cortex. 2019, 29, 1767–1777. [Google Scholar] [CrossRef]
- Wong, E.S.; Choy, R.W.; Zhang, Y.; Chu, W.K.; Chen, L.J.; Pang, C.P.; Yam, J.C. Global Retinoblastoma Survival and Globe Preservation: A Systematic Review and Meta-Analysis of Associations with Socioeconomic and Health-Care Factors. Lancet Glob. Health 2022, 10, e380–e389. [Google Scholar] [CrossRef] [PubMed]
- Etty, M.C.; Michaelsen, S.; Yelle, B.; Beaulieu, K.; Jacques, P.; Ettaleb, S.; Samaha, D.; Tousignant, B.; Druetz, T. The Sociodemographic Characteristics and Social Determinants of Visual Impairment in a Homeless Population in the Montreal Area. Can. J. Public Health 2022, 114, 113–124. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.; Zhou, X.; Wang, M.; Gu, J.; Miao, Y.; Tarimo, C.S.; He, Y.; Xing, Y.; Ye, B. The Pattern from the First Three Rounds of Vaccination: Declining Vaccination Rates. Front. Public Health 2023, 11, 1124548. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.D.; Leonard, S.; Hoggatt, K.J.; Boscardin, W.J.; Lum, E.N.; Moss-Vazquez, T.A.; Andino, R.; Wong, J.K.; Byers, A.; Bravata, D.M.; et al. Incidence of Severe COVID-19 Illness Following Vaccination and Booster with Bnt162b2, Mrna-1273, and Ad26.Cov2.S Vaccines. JAMA 2022, 328, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.L.; Tsai, T.C.; Dai, D.; Soto, M.; Rosenthal, N.; Orav, E.J.; Figueroa, J.F. Comparison of Pregnancy and Birth Outcomes before Vs During the COVID-19 Pandemic. JAMA Netw. Open. 2022, 5, e2226531. [Google Scholar] [CrossRef]
- Pellegrini, M.; Bernabei, F.; Scorcia, V.; Giannaccare, G. May Home Confinement During the COVID-19 Outbreak Worsen the Global Burden of Myopia? Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2069–2070. [Google Scholar] [CrossRef]
Characteristics | Patients, No. (%) (n = 114) | p Value | ||
---|---|---|---|---|
Overall$(n = 114) | Pre-COVID-19 $(n = 73) | COVID-19 $(n = 41) | ||
Sociodemographic characteristics | ||||
Age of onset, median (IQR) | 15.16 (11.70, 19.17) | 16.53 (13.77, 21.37) | 13.22 (8.61, 15.67) | <0.001 |
Age of onset group, % | ||||
age ≤ 16 | 66 (57.89) | 32 (43.84) | 34 (82.93) | <0.001 |
16 < age ≤ 35 | 48 (42.11) | 41 (56.16) | 7 (17.07) | |
Gender | ||||
Male | 107 (93.86) | 68(94.44) | 38 (92.68) | 0.989 |
Female | 7 (6.14) | 4(5.56) | 3 (7.32) | |
Annual family income, % | ||||
≤80,000 RMB | 93 (81.58) | 60 (82.19) | 33 (80.49) | 0.822 |
>80,000 RMB | 21 (18.42) | 13 (17.81) | 8 (19.51) | |
Geographical location, % | ||||
North China | 3 (2.63) | 2 (2.74) | 1 (2.44) | >0.999 |
South China | 111 (97.37) | 71 (97.26) | 40 (97.561) | |
Residence, % | ||||
Rural areas | 71 (62.28) | 46 (63.01) | 25 (60.98) | 0.989 |
Urban areas | 43 (37.72) | 27 (37.99) | 16 (39.02) | |
Season of onset, % | ||||
Cold season | 50 (43.86) | 30 (41.10) | 20 (48.78) | 0.44 |
Warm season | 64 (56.14) | 43 (58.90) | 21 (51.22) | |
Education years, median (IQR) | 7.50 (6.00, 9.00) | 9.00 (7.00, 10.0) | 6.00 (2.00, 8.00) | <0.001 |
Occupation, % | ||||
Student | 83 (72.81) | 47 (64.38) | 36 (87.80) | 0.013 |
Non-student | 31 (27.19) | 26 (35.62) | 5 (12.20) | |
COVID-19 related pressures | ||||
Time spent outdoors | 1.50 (0.75, 2.50) | 1.75 (0.75, 3.00) | 1.00 (0.50, 2.25) | 0.074 |
Outdoors for sports, median (IQR), h/day | 1.00 (0.00, 2.00) | 1.00 (0.00, 2.00) | 0.50 (0.00, 1.50) | 0.583 |
Outdoors for leisure, mean (SD), h/day | 0.75 (0.50, 1.00) | 0.75 (0.50, 1.00) | 0.50 (0.50, 0.75) | 0.001 |
Time spent on screen-based devices, h/day | 4.00 (2.00, 5.00) | 3.00 (2.00, 5.00) | 5.00 (3.00, 6.00) | 0.007 |
Smoke exposed | ||||
Firsthand smoke | 17 (14.9) | 15 (20.5) | 2 (4.88) | <0.001 |
Secondhand smoke | 49 (43.0) | 21 (28.8) | 28 (68.3) | |
Non-exposed | 48 (42.1) | 37 (50.7) | 11 (26.8) | |
Alcohol consumption | ||||
YES | 13 (11.4) | 10 (13.7) | 3 (7.32) | 0.372 |
NO | 101 (88.6) | 63 (86.3) | 38 (92.7) | |
Vaccination | ||||
YES | - | - | 19 (46.34) | 0.839 |
NO | - | - | 22 (53.66) | |
Mask-wearing habits | ||||
YES | - | 0 (0.00) | 41 (100.00) | <0.001 |
NO | - | 73 (100.00) | 0 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Jia, X.; Li, S.; Xiao, X.; Zhang, Q.; Wang, P. Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes 2023, 14, 1253. https://doi.org/10.3390/genes14061253
Zheng Y, Jia X, Li S, Xiao X, Zhang Q, Wang P. Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes. 2023; 14(6):1253. https://doi.org/10.3390/genes14061253
Chicago/Turabian StyleZheng, Yuxi, Xiaoyun Jia, Shiqiang Li, Xueshan Xiao, Qingjiong Zhang, and Panfeng Wang. 2023. "Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset" Genes 14, no. 6: 1253. https://doi.org/10.3390/genes14061253
APA StyleZheng, Y., Jia, X., Li, S., Xiao, X., Zhang, Q., & Wang, P. (2023). Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes, 14(6), 1253. https://doi.org/10.3390/genes14061253