Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Statistical Analysis and Visualization
3. Results
3.1. Comparison of LHON Onset between the Pre-COVID-19 Group and the COVID-19 Group
3.2. Socio-Demographic Characteristics of Study Patients
3.3. COVID-19-Related Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu-Wai-Man, P.; Griffiths, P.G.; Chinnery, P.F. Mitochondrial Optic Neuropathies—Disease Mechanisms and Therapeutic Strategies. Prog. Retin. Eye Res. 2011, 30, 81–114. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, S.; Xiao, X.; Guo, X.; Zhang, Q. Molecular Epidemiology of Mtdna Mutations in 903 Chinese Families Suspected with Leber Hereditary Optic Neuropathy. J. Hum. Genet. 2006, 51, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Nikoskelainen, E.K.; Savontaus, M.L.; Wanne, O.P.; Katila, M.J.; Nummelin, K.U. Leber’s Hereditary Optic Neuroretinopathy, a Maternally Inherited Disease. A Genealogic Study in Four Pedigrees. Arch. Ophthalmol. 1987, 105, 665–671. [Google Scholar] [CrossRef]
- Newman, N.J.; Lott, M.T.; Wallace, D.C. The Clinical Characteristics of Pedigrees of Leber’s Hereditary Optic Neuropathy with the 11778 Mutation. Am. J. Ophthalmol. 1991, 111, 750–762. [Google Scholar] [CrossRef]
- Johns, D.R.; Smith, K.H.; Miller, N.R.; Sulewski, M.E.; Bias, W.B. Identical Twins Who Are Discordant for Leber’s Hereditary Optic Neuropathy. Arch. Ophthalmol. 1993, 111, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, J.; Koenig, S.; Catarino, C.; Schaumberger, M.M.; Schworm, B.; Priglinger, S.G.; Rudolph, G.; von Livonius, B.; Klopstock, T.; Priglinger, C.S. Childhood Versus Early-Teenage Onset Leber’s Hereditary Optic Neuropathy: Visual Prognosis and Capacity for Recovery. Br. J. Ophthalmol. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Ma, M.; Xiong, S.; Zhao, S.; Zheng, Z.; Sun, T.; Li, C. COVID-19 Home Quarantine Accelerated the Progression of Myopia in Children Aged 7 to 12 Years in China. Invest. Ophthalmol. Vis. Sci. 2021, 62, 37. [Google Scholar] [CrossRef]
- Valabhji, J.; Barron, E.; Gorton, T.; Bakhai, C.; Kar, P.; Young, B.; Khunti, K.; Holman, N.; Sattar, N.; Wareham, N.J. Associations between Reductions in Routine Care Delivery and Non-COVID-19-Related Mortality in People with Diabetes in England During the COVID-19 Pandemic: A Population-Based Parallel Cohort Study. Lancet Diabetes Endocrinol. 2022, 10, 561–570. [Google Scholar] [CrossRef]
- Hui, L.; Marzan, M.B.; Potenza, S.; Rolnik, D.L.; Pritchard, N.; Said, J.M.; Palmer, K.R.; Whitehead, C.L.; Sheehan, P.M.; Ford, J.; et al. Increase in Preterm Stillbirths in Association with Reduction in Iatrogenic Preterm Births During COVID-19 Lockdown in Australia: A Multicenter Cohort Study. Am. J. Obs. Gynecol. 2022, 227, 491.e1–491.e17. [Google Scholar] [CrossRef]
- Zaslavsky, K.; Margolin, E.A. Leber’s Hereditary Optic Neuropathy in Older Individuals Because of Increased Alcohol Consumption During the COVID-19 Pandemic. J. Neuroophthalmol. 2021, 41, 316–320. [Google Scholar] [CrossRef]
- Roberts, N.J.; Vogelstein, J.T.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. The Predictive Capacity of Personal Genome Sequencing. Sci. Transl. Med. 2012, 4, 133ra58. [Google Scholar] [CrossRef]
- Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.; et al. Effect of Non-Pharmaceutical Interventions to Contain COVID-19 in China. Nature 2020, 585, 410–413. [Google Scholar] [CrossRef]
- Corona, E.; Chen, R.; Sikora, M.; Morgan, A.A.; Patel, C.J.; Ramesh, A.; Bustamante, C.D.; Butte, A.J. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration. PLoS Genet. 2013, 9, e1003447. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial Dysfunction as a Cause of Optic Neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Gene-Environment Interactions in Leber Hereditary Optic Neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, N.; Chu, W.K.; Cheung, C.Y.; Tang, S.; Li, F.F.; Chen, L.J.; Kam, K.W.; Young, A.L.; Ip, P.; et al. Exposure to Secondhand Smoke in Children Is Associated with a Thinner Retinal Nerve Fiber Layer: The Hong Kong Children Eye Study. Am. J. Ophthalmol. 2021, 223, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheung, S.S.L.; Chan, H.N.; Zhang, Y.; Wang, Y.M.; Yip, B.H.; Kam, K.W.; Yu, M.; Cheng, C.Y.; Young, A.L.; et al. Myopia Incidence and Lifestyle Changes among School Children During the COVID-19 Pandemic: A Population-Based Prospective Study. Br. J. Ophthalmol. 2021, 106, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Griffiths, P.G.; Brown, D.T.; Howell, N.; Turnbull, D.M.; Chinnery, P.F. The Epidemiology of Leber Hereditary Optic Neuropathy in the North East of England. Am. J. Hum. Genet. 2003, 72, 333–339. [Google Scholar] [CrossRef]
- Guo, H.; Li, S.; Dai, L.; Huang, X.; Yu, T.; Yin, Z.; Bai, Y. Genetic Analysis in a Cohort of Patients with Hereditary Optic Neuropathies in Southwest of China. Mitochondrion 2019, 46, 327–333. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Leonhardt, M.; Yu-Wai-Man, P.; Kirkman, M.A.; Korsten, A.; De Coo, I.F.; Chinnery, P.F.; Klopstock, T. Leber’s Hereditary Optic Neuropathy with Late Disease Onset: Clinical and Molecular Characteristics of 20 Patients. Orphanet. J. Rare. Dis. 2014, 9, 158. [Google Scholar] [CrossRef]
- Tsao, K.; Aitken, P.A.; Johns, D.R. Smoking as an Aetiological Factor in a Pedigree with Leber’s Hereditary Optic Neuropathy. Br. J. Ophthalmol. 1999, 83, 577–581. [Google Scholar] [CrossRef]
- Yuan, N.; Li, J.; Tang, S.; Li, F.F.; Lee, C.O.; Ng, M.P.H.; Cheung, C.Y.; Tham, C.C.; Pang, C.P.; Chen, L.J.; et al. Association of Secondhand Smoking Exposure with Choroidal Thinning in Children Aged 6 to 8 Years: The Hong Kong Children Eye Study. JAMA Ophthalmol. 2019, 137, 1406–1414. [Google Scholar] [CrossRef]
- Lois, N.; Abdelkader, E.; Reglitz, K.; Garden, C.; Ayres, J.G. Environmental Tobacco Smoke Exposure and Eye Disease. Br. J. Ophthalmol. 2008, 92, 1304–1310. [Google Scholar] [CrossRef]
- Etzel, R.A. Indoor and Outdoor Air Pollution: Tobacco Smoke, Moulds and Diseases in Infants and Children. Int. J. Hyg. Env. Health 2007, 210, 611–616. [Google Scholar] [CrossRef]
- Chen, Y.J.; Qin, G.; Chen, J.; Xu, J.L.; Feng, D.Y.; Wu, X.Y.; Li, X. Comparison of Face-Touching Behaviors before and During the Coronavirus Disease 2019 Pandemic. JAMA Netw. Open. 2020, 3, e2016924. [Google Scholar] [CrossRef]
- Zheng, C.; Poon, E.T.; Wan, K.; Dai, Z.; Wong, S.H. Effects of Wearing a Mask During Exercise on Physiological and Psychological Outcomes in Healthy Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2022, 53, 125–150. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Q. Hypoxia Activation of Mitophagy and Its Role in Disease Pathogenesis. Antioxid. Redox Signal. 2015, 22, 1032–1046. [Google Scholar] [CrossRef]
- Douglas, J.D.M.; McLean, N.; Horsley, C.; Higgins, G.; Douglas, C.M.; Robertson, E. COVID-19: Smoke Testing of Surgical Mask and Respirators. Occup. Med. 2020, 70, 556–563. [Google Scholar] [CrossRef]
- Mateus, C.; d’Almeida, O.C.; Reis, A.; Silva, E.; Castelo-Branco, M. Genetically Induced Impairment of Retinal Ganglion Cells at the Axonal Level Is Linked to Extrastriate Cortical Plasticity. Brain Struct. Funct. 2016, 221, 1767–1780. [Google Scholar] [CrossRef]
- Vasalauskaite, A.; Morgan, J.E.; Sengpiel, F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb. Cortex. 2019, 29, 1767–1777. [Google Scholar] [CrossRef]
- Wong, E.S.; Choy, R.W.; Zhang, Y.; Chu, W.K.; Chen, L.J.; Pang, C.P.; Yam, J.C. Global Retinoblastoma Survival and Globe Preservation: A Systematic Review and Meta-Analysis of Associations with Socioeconomic and Health-Care Factors. Lancet Glob. Health 2022, 10, e380–e389. [Google Scholar] [CrossRef] [PubMed]
- Etty, M.C.; Michaelsen, S.; Yelle, B.; Beaulieu, K.; Jacques, P.; Ettaleb, S.; Samaha, D.; Tousignant, B.; Druetz, T. The Sociodemographic Characteristics and Social Determinants of Visual Impairment in a Homeless Population in the Montreal Area. Can. J. Public Health 2022, 114, 113–124. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.; Zhou, X.; Wang, M.; Gu, J.; Miao, Y.; Tarimo, C.S.; He, Y.; Xing, Y.; Ye, B. The Pattern from the First Three Rounds of Vaccination: Declining Vaccination Rates. Front. Public Health 2023, 11, 1124548. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.D.; Leonard, S.; Hoggatt, K.J.; Boscardin, W.J.; Lum, E.N.; Moss-Vazquez, T.A.; Andino, R.; Wong, J.K.; Byers, A.; Bravata, D.M.; et al. Incidence of Severe COVID-19 Illness Following Vaccination and Booster with Bnt162b2, Mrna-1273, and Ad26.Cov2.S Vaccines. JAMA 2022, 328, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.L.; Tsai, T.C.; Dai, D.; Soto, M.; Rosenthal, N.; Orav, E.J.; Figueroa, J.F. Comparison of Pregnancy and Birth Outcomes before Vs During the COVID-19 Pandemic. JAMA Netw. Open. 2022, 5, e2226531. [Google Scholar] [CrossRef]
- Pellegrini, M.; Bernabei, F.; Scorcia, V.; Giannaccare, G. May Home Confinement During the COVID-19 Outbreak Worsen the Global Burden of Myopia? Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2069–2070. [Google Scholar] [CrossRef]
Characteristics | Patients, No. (%) (n = 114) | p Value | ||
---|---|---|---|---|
Overall$(n = 114) | Pre-COVID-19 $(n = 73) | COVID-19 $(n = 41) | ||
Sociodemographic characteristics | ||||
Age of onset, median (IQR) | 15.16 (11.70, 19.17) | 16.53 (13.77, 21.37) | 13.22 (8.61, 15.67) | <0.001 |
Age of onset group, % | ||||
age ≤ 16 | 66 (57.89) | 32 (43.84) | 34 (82.93) | <0.001 |
16 < age ≤ 35 | 48 (42.11) | 41 (56.16) | 7 (17.07) | |
Gender | ||||
Male | 107 (93.86) | 68(94.44) | 38 (92.68) | 0.989 |
Female | 7 (6.14) | 4(5.56) | 3 (7.32) | |
Annual family income, % | ||||
≤80,000 RMB | 93 (81.58) | 60 (82.19) | 33 (80.49) | 0.822 |
>80,000 RMB | 21 (18.42) | 13 (17.81) | 8 (19.51) | |
Geographical location, % | ||||
North China | 3 (2.63) | 2 (2.74) | 1 (2.44) | >0.999 |
South China | 111 (97.37) | 71 (97.26) | 40 (97.561) | |
Residence, % | ||||
Rural areas | 71 (62.28) | 46 (63.01) | 25 (60.98) | 0.989 |
Urban areas | 43 (37.72) | 27 (37.99) | 16 (39.02) | |
Season of onset, % | ||||
Cold season | 50 (43.86) | 30 (41.10) | 20 (48.78) | 0.44 |
Warm season | 64 (56.14) | 43 (58.90) | 21 (51.22) | |
Education years, median (IQR) | 7.50 (6.00, 9.00) | 9.00 (7.00, 10.0) | 6.00 (2.00, 8.00) | <0.001 |
Occupation, % | ||||
Student | 83 (72.81) | 47 (64.38) | 36 (87.80) | 0.013 |
Non-student | 31 (27.19) | 26 (35.62) | 5 (12.20) | |
COVID-19 related pressures | ||||
Time spent outdoors | 1.50 (0.75, 2.50) | 1.75 (0.75, 3.00) | 1.00 (0.50, 2.25) | 0.074 |
Outdoors for sports, median (IQR), h/day | 1.00 (0.00, 2.00) | 1.00 (0.00, 2.00) | 0.50 (0.00, 1.50) | 0.583 |
Outdoors for leisure, mean (SD), h/day | 0.75 (0.50, 1.00) | 0.75 (0.50, 1.00) | 0.50 (0.50, 0.75) | 0.001 |
Time spent on screen-based devices, h/day | 4.00 (2.00, 5.00) | 3.00 (2.00, 5.00) | 5.00 (3.00, 6.00) | 0.007 |
Smoke exposed | ||||
Firsthand smoke | 17 (14.9) | 15 (20.5) | 2 (4.88) | <0.001 |
Secondhand smoke | 49 (43.0) | 21 (28.8) | 28 (68.3) | |
Non-exposed | 48 (42.1) | 37 (50.7) | 11 (26.8) | |
Alcohol consumption | ||||
YES | 13 (11.4) | 10 (13.7) | 3 (7.32) | 0.372 |
NO | 101 (88.6) | 63 (86.3) | 38 (92.7) | |
Vaccination | ||||
YES | - | - | 19 (46.34) | 0.839 |
NO | - | - | 22 (53.66) | |
Mask-wearing habits | ||||
YES | - | 0 (0.00) | 41 (100.00) | <0.001 |
NO | - | 73 (100.00) | 0 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Jia, X.; Li, S.; Xiao, X.; Zhang, Q.; Wang, P. Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes 2023, 14, 1253. https://doi.org/10.3390/genes14061253
Zheng Y, Jia X, Li S, Xiao X, Zhang Q, Wang P. Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes. 2023; 14(6):1253. https://doi.org/10.3390/genes14061253
Chicago/Turabian StyleZheng, Yuxi, Xiaoyun Jia, Shiqiang Li, Xueshan Xiao, Qingjiong Zhang, and Panfeng Wang. 2023. "Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset" Genes 14, no. 6: 1253. https://doi.org/10.3390/genes14061253
APA StyleZheng, Y., Jia, X., Li, S., Xiao, X., Zhang, Q., & Wang, P. (2023). Non-Pharmaceutical Interventions against COVID-19 Causing a Lower Trend in Age of LHON Onset. Genes, 14(6), 1253. https://doi.org/10.3390/genes14061253