Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Inclusion Criteria
2.3. Laboratory Procedures
2.4. HLA Genotyping
2.5. Statistical Analysis
2.6. Ethics Procedures
3. Results
3.1. Association with GO High-Risk Alleles
3.2. Associations with GO Protective Alleles
3.3. Associations with Non-GO but Not GO High-Risk Alleles
3.4. Associations with Non-GO Protective Alleles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AITD | autoimmune thyroid disorder |
ApoA | apolipoprotein A |
ApoB | apolipoprotein B |
CAS | clinical activity score |
DM1 | diabetes mellitus type 1 |
EDTA | Ethylenediaminetetraacetic acid (anticoagulant) |
GD | Graves’ disease |
GO | Graves’ orbitopathy |
GOHR | GO high risk alleles |
GOP | GO protective alleles |
HbA1c | glycosylated hemoglobin |
HLA | human leukocyte antigens |
IGF-1R | insulin-like growth factor 1 receptor |
LDL | low-density lipoprotein |
LDLR | LDL receptor |
LPL | lipoprotein lipase |
MHC | major histocompatibility complex |
NGS | next-generation sequencing |
non-GOHR | non-GO high risk alleles |
non-GOP | alleles protective against non-GO |
PCSK9 | proprotein convertase subtilisin/kexin type 9 |
QoL | quality of life |
RA | rheumatoid arthritis |
SNPs | Single Nucleotide Polymorphism |
TC | total cholesterol |
TRAb | TSH-receptor antibodies |
TSH | thyroid stimulating hormone (thyrotropin) |
US | ultrasound |
References
- Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A.; Stasiak, M. Actual Associations between HLA Haplotype and Graves’ Disease Development. J. Clin. Med. 2022, 11, 2492. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Tanda, M.L. Current concepts regarding Graves’ orbitopathy. J. Intern. Med. 2022, 292, 692–716. [Google Scholar] [CrossRef] [PubMed]
- Krieger, C.C.; Morgan, S.J.; Neumann, S.; Gershengorn, M.C. Thyroid stimulating hormone (TSH)/insulin-like growth factor 1 (IGF1) receptor cross-talk in human cells. Curr. Opin. Endocr. Metab. Res. 2018, 2, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; Ayvaz, G.; et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef]
- Stasiak, M.; Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A. Significance of HLA in the development of Graves’ orbitopathy. Genes Immun. 2023, 24, 32–38. [Google Scholar] [CrossRef]
- Ye, X.Z.; Huang, S.S.; Liu, J.; Lu, B.; Shao, J.Q. High serum cholesterol: A novel risk factor for thyroid associated ophthalmopathy? Zhonghua Nei Ke Za Zhi 2019, 1, 823–825. [Google Scholar]
- Lanzolla, G.; Sabini, E.; Profilo, M.A.; Mazzi, B.; Sframeli, A.; Rocchi, R.; Menconi, F.; Leo, M.; Nardi, M.; Vitti, P.; et al. Relationship between serum cholesterol and Graves’ orbitopathy (GO): A confirmatory study. J. Endocrinol. Investig. 2018, 41, 1417–1423. [Google Scholar] [CrossRef]
- Zawadzka-Starczewska, K.; Stasiak, B.; Wojciechowska-Durczyńska, K.; Lewiński, A.; Stasiak, M. Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. Int. J. Environ. Res. Public Health 2022, 19, 16941. [Google Scholar] [CrossRef]
- Di Taranto, M.D.; Fortunato, G. Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int. J. Mol. Sci. 2023, 24, 3224. [Google Scholar] [CrossRef]
- Wong, S.K.; Ramli, F.F.; Ali, A.; Ibrahim, N. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022, 10, 3239. [Google Scholar] [CrossRef] [PubMed]
- Mayor, N.P.; Hayhurst, J.D.; Turner, T.R.; Szydlo, R.M.; Shaw, B.E.; Bultitude, W.P. Recipients Receiving Better HLA-Matched Hematopoietic Cell Transplantation Grafts, Uncovered by a Novel HLA Typing Method, Have Superior Survival: A Retrospective Study. Biol. Blood Marrow Transpl. 2019, 25, 443–450. [Google Scholar]
- MIA FORA Automation User Guideline. Available online: https://1drv.ms/b/s!Aiz1Ha7LrenIbNMnpeLaMuPbSDo?e=Edt5Db (accessed on 15 March 2023).
- Inoue, D.; Sato, K.; Enomoto, T.; Sugawa, H.; Maeda, M.; Inoko, H. Correlation of HLA types and clinical findings in Japanese patients with hyperthyroid Graves’ disease: Evidence indicating the existence of four subpopulations. Clin. Endocrinol. 1992, 36, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Sato, K.; Maeda, M.; Inoko, H.; Tsuji, K.; Mori, T. Genetic differences shown by HLA typing among Japanese patients with euthyroid Graves’ ophthalmopathy, Graves’ disease and Hashimoto’s thyroiditis: Genetic characteristics of euthyroid Graves’ ophthalmopathy. Clin. Endocrinol. 1991, 34, 57–62. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Nakamura, Y. Human leukocyte antigens associated with hyperthyroid Graves ophthalmology in Japanese patients. Am. J. Ophthalmol. 1998, 126, 805–810. [Google Scholar] [CrossRef]
- Mehraji, Z.; Farazmand, A.; Esteghamati, A.; Noshad, S.; Sadr, M.; Amirzargar, S. Association of Human Leukocyte Antigens Class I and II with Graves’ Disease in Iranian Population. Iran J. Immunol. 2017, 14, 223–230. [Google Scholar] [PubMed]
- Huang, X.; Liu, G.; Mei, S.; Cai, J.; Rao, J.; Tang, M. Human leucocyte antigen alleles confer susceptibility and progression to Graves’ ophthalmopathy in a Southern Chinese population. Br. J. Ophthalmol. 2021, 105, 1462–1468. [Google Scholar] [CrossRef]
- Sabini, E.; Mazzi, B.; Profilo, M.A.; Mautone, T.; Casini, G.; Rocchi, R.; Ionni, I.; Menconi, F.; Leo, M.; Nardi, M.; et al. High serum cholesterol is a novel risk factor for Graves’ orbitopathy: Results of a cross-sectional study. Thyroid 2018, 28, 386–394. [Google Scholar] [CrossRef]
- Ishina, I.A.; Zakharova, M.Y.; Kurbatskaia, I.N.; Mamedov, A.E.; Belogurov, A.A., Jr.; Gabibov, A.G. MHC Class II Presentation in Autoimmunity. Cells 2023, 12, 314. [Google Scholar] [CrossRef]
- Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. HLA, gut microbiome and hepatic autoimmunity. Front. Immunol. 2022, 13, 980768. [Google Scholar] [CrossRef]
- Miglioranza Scavuzzi, B.; van Drongelen, V.; Kaur, B.; Fox, J.C.; Liu, J.; Mesquita-Ferrari, R.A.; Kahlenberg, J.M.; Farkash, E.A.; Benavides, F.; Miller, F.W.; et al. The lupus susceptibility allele DRB1*03:01 encodes a disease-driving epitope. Commun. Biol. 2022, 5, 751. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.J.; Marshall, S.E.; Weetman, A.P.; Bunce, M.; Bell, J.I.; Wass, J.A.; Welsh, K.I. Histocompatibility leucocyte antigens and closely linked immunomodulatory genes in autoimmune thyroid disease. Clin. Endocrinol. 2001, 55, 491–499. [Google Scholar] [CrossRef] [PubMed]
- DR/DQ Associations. Available online: http://www.ctht.info/Table%2013%20DRB1%20DQA1%20DQB1%20associations%20in%20various%20populations.pdf (accessed on 24 February 2023).
- Common Associations of HLA-C alleles with Alleles of HLA-B. Available online: http://www.ctht.info/Table%209%20CB%20ASSOCIATIONS.pdf (accessed on 24 February 2023).
- Common Associations of HLA-B alleles with Alleles of HLA-C. Available online: http://www.ctht.info/Table%208%20BC%20ASSOCIATIONS.pdf (accessed on 24 February 2023).
- Takahasi, K.R.; Innan, H. The direction of linkage disequilibrium: A new measure based on the ancestral-derived status of segregating alleles. Genetics 2008, 179, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Lapa, D.; Trimarchi, F.; Vita, G.; Fallahi, P.; Antonelli, A.; Benvenga, S. Certain HLA alleles are associated with stress-triggered Graves’ disease and influence its course. Endocrine 2017, 55, 93–100. [Google Scholar] [CrossRef]
- Yanagawa, T.; Mangklabruks, A.; Chang, Y.B.; Okamoto, Y.; Fisfalen, M.E.; Curran, P.G.; DeGroot, L.J. Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J. Clin. Endocrinol. Metab. 1993, 76, 1569–1574. [Google Scholar]
- Odermarsky, M.; Nilsson, A.; Lernmark, A.; Sjöblad, S.; Liuba, P. Atherogenic vascular and lipid phenotypes in young patients with Type 1 diabetes are associated with diabetes high-risk HLA genotype. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3175–H3179. [Google Scholar] [CrossRef]
- Holoshitz, J. The rheumatoid arthritis HLA-DRB1 shared epitope. Curr. Opin. Rheumatol. 2010, 22, 293–298. [Google Scholar] [CrossRef]
- Toms, T.E.; Panoulas, V.F.; Smith, J.P.; Douglas, K.M.; Metsios, G.S.; Stavropoulos-Kalinoglou, A.; Kitas, G.D. Rheumatoid arthritis susceptibility genes associate with lipid levels in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 1025–1032. [Google Scholar] [CrossRef]
- Egeberg, A.; Hansen, P.R.; Gislason, G.H.; Thyssen, J.P. Clustering of autoimmune diseases in patients with rosacea. J. Am. Acad. Dermatol. 2016, 74, 667–672.e1. [Google Scholar] [CrossRef]
- Xiao, W.; Li, J.; Huang, X.; Zhu, Q.; Liu, T.; Xie, H.; Deng, Z.; Tang, Y. Mediation roles of neutrophils and high-density lipoprotein (HDL) on the relationship between HLA-DQB1 and rosacea. Ann. Med. 2022, 54, 1530–1537. [Google Scholar] [CrossRef]
- Yang, F.; Sun, L.; Zhu, X.; Han, J.; Zeng, Y.; Nie, C.; Yuan, H.; Li, X.; Shi, X.; Yang, Y.; et al. Identification of new genetic variants of HLA-DQB1 associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. Aging 2017, 9, 2316–2333. [Google Scholar] [CrossRef] [PubMed]
- Mostafazadeh, A.; Saravi, M.; Niaki, H.A.; Drabbels, J.; Gholipour, H.M.; Minagar, M.; Mosavi, E.; Jalali, F.; Bijani, A. HLA-DRBeta1, circulating Th1/Th2 cytokines and immunological homunculus in coronary atherosclerosis. Iran J. Allergy Asthma Immunol. 2011, 10, 11–19. [Google Scholar] [PubMed]
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-A*01:01 | 168.41 ± 41.46 (44) | 184.84 ± 58.44 (74) | 0.15 |
HLA-A*32:01 | 197.40 ± 70.69 (5) | 177.88 ± 52.52 (113) | 0.60 |
HLA-B*37:01 | 232.40 ± 48.78 (5) | 176.34 ± 52.28 (113) | 0.03 * |
HLA-B*39:01 | 201.67 ± 63.59 (6) | 177.48 ± 52.60 (112) | 0.37 |
HLA-C*03:02 | 224.29 ± 49.51 (7) | 175.84 ± 52.27 (111) | 0.02 * |
HLA-C*08:02 | 211.20 ± 63.99 (5) | 177.27 ± 52.51 (113) | 0.22 |
HLA-DQB1*02:01 | 164.43 ± 40.70 (35) | 184.74 ± 56.76 (83) | 0.03 * |
HLA-DRB1*03:01 | 162.51 ± 39.62 (35) | 185.54 ± 56.77 (83) | 0.01 * |
HLA-DRB1*14:01 | 196.67 ± 52.32 (3) | 178.24 ± 53.33 (115) | 0.57 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-A*01:01 | 97.02 ± 33.22 (44) | 112.43 ± 49.90 (74) | 0.16 |
HLA-A*32:01 | 116.80 ± 51.46 (5) | 106.24 ± 44.79 (113) | 0.57 |
HLA-B*37:01 | 141.60 ± 43.63 (5) | 105.14 ± 44.51 (113) | 0.11 |
HLA-B*39:01 | 120.50 ± 52.38 (6) | 105.95 ± 44.61 (112) | 0.46 |
HLA-C*03:02 | 143.57 ± 47.98 (7) | 104.36 ± 43.89 (111) | 0.04 * |
HLA-C*08:02 | 137.40 ± 47.15 (5) | 105.33 ± 44.52 (113) | 0.10 |
HLA-DQB1*02:01 | 95.46 ± 32.87 (35) | 111.42 ± 48.49 (83) | 0.13 |
HLA-DRB1*03:01 | 93.09 ± 31.41 (35) | 112.42 ± 48.52 (83) | 0.06 |
HLA-DRB1*14:01 | 119.67 ± 50.58 (3) | 106.35 ± 44.94 (115) | 0.54 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-C*03:04 | 144.25 ± 54.67 (4) | 179.92 ± 52.95 (114) | 0.16 |
HLA-C*04:01 | 173.10 ± 54.81 (20) | 179.86 ± 53.04 (98) | 0.68 |
HLA-C*07:02 | 166.60 ± 61.73 (10) | 179.83 ± 52.49 (108) | 0.36 |
HLA-DRB1*15:02 | 188.25 ± 65.65 (4) | 178.38 ± 53.00 (114) | 0.76 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-C*03:04 | 89.25 ± 47.30 (4) | 107.30 ± 44.90 (114) | 0.37 |
HLA-C*04:01 | 105.30 ± 48.07 (20) | 106.97 ± 44.48 (98) | 0.85 |
HLA-C*07:02 | 94.60 ± 49.27 (10) | 107.81 ± 44.55 (108) | 0.27 |
HLA-DRB1*15:02 | 114.25 ± 49.00 (4) | 106.42 ± 44.96 (114) | 0.62 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-B*08:01 | 158.14 ± 32.15 (28) | 185.11 ± 56.81 (90) | 0.04 * |
HLA-B*39:06 | 158.80 ± 67.39 (5) | 179.59 ± 52.65 (113) | 0.27 |
HLA-B*51:01 | 168.00 ± 51.29 (12) | 179.93 ± 53.47 (106) | 0.48 |
HLA-C*07:01 | 170.03 ± 41.75 (40) | 183.17 ± 57.90 (78) | 0.34 |
HLA-C*14:02 | 166.00 ± 56.34 (4) | 179.16 ± 53.26 (114) | 0.57 |
HLA-C*16:02 | 216.50 ± 103.94 (2) | 178.06 ± 52.50 (116) | 0.97 |
HLA-C*17:01 | 143.00 ± 31.30 (6) | 180.62 ± 53.50 (112) | 0.03 * |
HLA-DQB1*03:01 | 183.61 ± 58.21 (54) | 174.58 ± 48.59 (64) | 0.37 |
HLA-DRB1*15:02 | 188.25 ± 65.65 (4) | 178.38 ± 53.00 (114) | 0.76 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-B*08:01 | 90.82 ± 27.49 (28) | 111.62 ± 48.13 (90) | 0.08 |
HLA-B*39:06 | 98.40 ± 47.51 (5) | 107.05 ± 44.96 (113) | 0.53 |
HLA-B*51:01 | 97.17 ± 43.31 (12) | 107.76 ± 45.14 (106) | 0.41 |
HLA-C*07:01 | 100.28 ± 37.53 (40) | 109.97 ± 48.13 (78) | 0.36 |
HLA-C*14:02 | 102.50 ± 53.63 (4) | 106.83 ± 44.83 (114) | 0.63 |
HLA-C*16:02 | 148.50 ± 111.02 (2) | 105.97 ± 43.73 (116) | 0.93 |
HLA-C*17:01 | 78.83 ± 18.97 (6) | 108.18 ± 45.43 (112) | 0.08 |
HLA-DQB1*03:01 | 112.09 ± 49.40 (54) | 102.12 ± 40.55 (64) | 0.33 |
HLA-DRB1*15:02 | 114.25 ± 49.00 (4) | 106.42 ± 44.96 (114) | 0.62 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-A*32:01 | 197.40 ± 70.69 (5) | 177.88 ± 52.52 (113) | 0.60 |
HLA-B*07:02 | 193.86 ± 62.66 (14) | 176.67 ± 51.77 (104) | 0.31 |
HLA-C*07:02 | 166.60 ± 61.73 (10) | 179.83 ± 52.49 (108) | 0.36 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-A*32:01 | 116.80 ± 51.46 (5) | 106.24 ± 44.79 (113) | 0.57 |
HLA-B*07:02 | 123.29 ± 55.97 (14) | 104.45 ± 43.03 (104) | 0.21 |
HLA-C*07:02 | 94.60 ± 49.27 (10) | 107.81 ± 44.55 (108) | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, M.; Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A. Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes 2023, 14, 1209. https://doi.org/10.3390/genes14061209
Stasiak M, Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A. Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes. 2023; 14(6):1209. https://doi.org/10.3390/genes14061209
Chicago/Turabian StyleStasiak, Magdalena, Katarzyna Zawadzka-Starczewska, Bogusław Tymoniuk, Bartłomiej Stasiak, and Andrzej Lewiński. 2023. "Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent" Genes 14, no. 6: 1209. https://doi.org/10.3390/genes14061209
APA StyleStasiak, M., Zawadzka-Starczewska, K., Tymoniuk, B., Stasiak, B., & Lewiński, A. (2023). Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes, 14(6), 1209. https://doi.org/10.3390/genes14061209