Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Inclusion Criteria
2.3. Laboratory Procedures
2.4. HLA Genotyping
2.5. Statistical Analysis
2.6. Ethics Procedures
3. Results
3.1. Association with GO High-Risk Alleles
3.2. Associations with GO Protective Alleles
3.3. Associations with Non-GO but Not GO High-Risk Alleles
3.4. Associations with Non-GO Protective Alleles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AITD | autoimmune thyroid disorder |
ApoA | apolipoprotein A |
ApoB | apolipoprotein B |
CAS | clinical activity score |
DM1 | diabetes mellitus type 1 |
EDTA | Ethylenediaminetetraacetic acid (anticoagulant) |
GD | Graves’ disease |
GO | Graves’ orbitopathy |
GOHR | GO high risk alleles |
GOP | GO protective alleles |
HbA1c | glycosylated hemoglobin |
HLA | human leukocyte antigens |
IGF-1R | insulin-like growth factor 1 receptor |
LDL | low-density lipoprotein |
LDLR | LDL receptor |
LPL | lipoprotein lipase |
MHC | major histocompatibility complex |
NGS | next-generation sequencing |
non-GOHR | non-GO high risk alleles |
non-GOP | alleles protective against non-GO |
PCSK9 | proprotein convertase subtilisin/kexin type 9 |
QoL | quality of life |
RA | rheumatoid arthritis |
SNPs | Single Nucleotide Polymorphism |
TC | total cholesterol |
TRAb | TSH-receptor antibodies |
TSH | thyroid stimulating hormone (thyrotropin) |
US | ultrasound |
References
- Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A.; Stasiak, M. Actual Associations between HLA Haplotype and Graves’ Disease Development. J. Clin. Med. 2022, 11, 2492. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bartalena, L.; Tanda, M.L. Current concepts regarding Graves’ orbitopathy. J. Intern. Med. 2022, 292, 692–716. [Google Scholar] [CrossRef] [PubMed]
- Krieger, C.C.; Morgan, S.J.; Neumann, S.; Gershengorn, M.C. Thyroid stimulating hormone (TSH)/insulin-like growth factor 1 (IGF1) receptor cross-talk in human cells. Curr. Opin. Endocr. Metab. Res. 2018, 2, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; Ayvaz, G.; et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef]
- Stasiak, M.; Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A. Significance of HLA in the development of Graves’ orbitopathy. Genes Immun. 2023, 24, 32–38. [Google Scholar] [CrossRef]
- Ye, X.Z.; Huang, S.S.; Liu, J.; Lu, B.; Shao, J.Q. High serum cholesterol: A novel risk factor for thyroid associated ophthalmopathy? Zhonghua Nei Ke Za Zhi 2019, 1, 823–825. [Google Scholar]
- Lanzolla, G.; Sabini, E.; Profilo, M.A.; Mazzi, B.; Sframeli, A.; Rocchi, R.; Menconi, F.; Leo, M.; Nardi, M.; Vitti, P.; et al. Relationship between serum cholesterol and Graves’ orbitopathy (GO): A confirmatory study. J. Endocrinol. Investig. 2018, 41, 1417–1423. [Google Scholar] [CrossRef]
- Zawadzka-Starczewska, K.; Stasiak, B.; Wojciechowska-Durczyńska, K.; Lewiński, A.; Stasiak, M. Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. Int. J. Environ. Res. Public Health 2022, 19, 16941. [Google Scholar] [CrossRef]
- Di Taranto, M.D.; Fortunato, G. Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int. J. Mol. Sci. 2023, 24, 3224. [Google Scholar] [CrossRef]
- Wong, S.K.; Ramli, F.F.; Ali, A.; Ibrahim, N. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022, 10, 3239. [Google Scholar] [CrossRef] [PubMed]
- Mayor, N.P.; Hayhurst, J.D.; Turner, T.R.; Szydlo, R.M.; Shaw, B.E.; Bultitude, W.P. Recipients Receiving Better HLA-Matched Hematopoietic Cell Transplantation Grafts, Uncovered by a Novel HLA Typing Method, Have Superior Survival: A Retrospective Study. Biol. Blood Marrow Transpl. 2019, 25, 443–450. [Google Scholar]
- MIA FORA Automation User Guideline. Available online: https://1drv.ms/b/s!Aiz1Ha7LrenIbNMnpeLaMuPbSDo?e=Edt5Db (accessed on 15 March 2023).
- Inoue, D.; Sato, K.; Enomoto, T.; Sugawa, H.; Maeda, M.; Inoko, H. Correlation of HLA types and clinical findings in Japanese patients with hyperthyroid Graves’ disease: Evidence indicating the existence of four subpopulations. Clin. Endocrinol. 1992, 36, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Sato, K.; Maeda, M.; Inoko, H.; Tsuji, K.; Mori, T. Genetic differences shown by HLA typing among Japanese patients with euthyroid Graves’ ophthalmopathy, Graves’ disease and Hashimoto’s thyroiditis: Genetic characteristics of euthyroid Graves’ ophthalmopathy. Clin. Endocrinol. 1991, 34, 57–62. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Nakamura, Y. Human leukocyte antigens associated with hyperthyroid Graves ophthalmology in Japanese patients. Am. J. Ophthalmol. 1998, 126, 805–810. [Google Scholar] [CrossRef]
- Mehraji, Z.; Farazmand, A.; Esteghamati, A.; Noshad, S.; Sadr, M.; Amirzargar, S. Association of Human Leukocyte Antigens Class I and II with Graves’ Disease in Iranian Population. Iran J. Immunol. 2017, 14, 223–230. [Google Scholar] [PubMed]
- Huang, X.; Liu, G.; Mei, S.; Cai, J.; Rao, J.; Tang, M. Human leucocyte antigen alleles confer susceptibility and progression to Graves’ ophthalmopathy in a Southern Chinese population. Br. J. Ophthalmol. 2021, 105, 1462–1468. [Google Scholar] [CrossRef]
- Sabini, E.; Mazzi, B.; Profilo, M.A.; Mautone, T.; Casini, G.; Rocchi, R.; Ionni, I.; Menconi, F.; Leo, M.; Nardi, M.; et al. High serum cholesterol is a novel risk factor for Graves’ orbitopathy: Results of a cross-sectional study. Thyroid 2018, 28, 386–394. [Google Scholar] [CrossRef]
- Ishina, I.A.; Zakharova, M.Y.; Kurbatskaia, I.N.; Mamedov, A.E.; Belogurov, A.A., Jr.; Gabibov, A.G. MHC Class II Presentation in Autoimmunity. Cells 2023, 12, 314. [Google Scholar] [CrossRef]
- Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. HLA, gut microbiome and hepatic autoimmunity. Front. Immunol. 2022, 13, 980768. [Google Scholar] [CrossRef]
- Miglioranza Scavuzzi, B.; van Drongelen, V.; Kaur, B.; Fox, J.C.; Liu, J.; Mesquita-Ferrari, R.A.; Kahlenberg, J.M.; Farkash, E.A.; Benavides, F.; Miller, F.W.; et al. The lupus susceptibility allele DRB1*03:01 encodes a disease-driving epitope. Commun. Biol. 2022, 5, 751. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.J.; Marshall, S.E.; Weetman, A.P.; Bunce, M.; Bell, J.I.; Wass, J.A.; Welsh, K.I. Histocompatibility leucocyte antigens and closely linked immunomodulatory genes in autoimmune thyroid disease. Clin. Endocrinol. 2001, 55, 491–499. [Google Scholar] [CrossRef] [PubMed][Green Version]
- DR/DQ Associations. Available online: http://www.ctht.info/Table%2013%20DRB1%20DQA1%20DQB1%20associations%20in%20various%20populations.pdf (accessed on 24 February 2023).
- Common Associations of HLA-C alleles with Alleles of HLA-B. Available online: http://www.ctht.info/Table%209%20CB%20ASSOCIATIONS.pdf (accessed on 24 February 2023).
- Common Associations of HLA-B alleles with Alleles of HLA-C. Available online: http://www.ctht.info/Table%208%20BC%20ASSOCIATIONS.pdf (accessed on 24 February 2023).
- Takahasi, K.R.; Innan, H. The direction of linkage disequilibrium: A new measure based on the ancestral-derived status of segregating alleles. Genetics 2008, 179, 1705–1712. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vita, R.; Lapa, D.; Trimarchi, F.; Vita, G.; Fallahi, P.; Antonelli, A.; Benvenga, S. Certain HLA alleles are associated with stress-triggered Graves’ disease and influence its course. Endocrine 2017, 55, 93–100. [Google Scholar] [CrossRef]
- Yanagawa, T.; Mangklabruks, A.; Chang, Y.B.; Okamoto, Y.; Fisfalen, M.E.; Curran, P.G.; DeGroot, L.J. Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. J. Clin. Endocrinol. Metab. 1993, 76, 1569–1574. [Google Scholar]
- Odermarsky, M.; Nilsson, A.; Lernmark, A.; Sjöblad, S.; Liuba, P. Atherogenic vascular and lipid phenotypes in young patients with Type 1 diabetes are associated with diabetes high-risk HLA genotype. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3175–H3179. [Google Scholar] [CrossRef]
- Holoshitz, J. The rheumatoid arthritis HLA-DRB1 shared epitope. Curr. Opin. Rheumatol. 2010, 22, 293–298. [Google Scholar] [CrossRef][Green Version]
- Toms, T.E.; Panoulas, V.F.; Smith, J.P.; Douglas, K.M.; Metsios, G.S.; Stavropoulos-Kalinoglou, A.; Kitas, G.D. Rheumatoid arthritis susceptibility genes associate with lipid levels in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 1025–1032. [Google Scholar] [CrossRef]
- Egeberg, A.; Hansen, P.R.; Gislason, G.H.; Thyssen, J.P. Clustering of autoimmune diseases in patients with rosacea. J. Am. Acad. Dermatol. 2016, 74, 667–672.e1. [Google Scholar] [CrossRef][Green Version]
- Xiao, W.; Li, J.; Huang, X.; Zhu, Q.; Liu, T.; Xie, H.; Deng, Z.; Tang, Y. Mediation roles of neutrophils and high-density lipoprotein (HDL) on the relationship between HLA-DQB1 and rosacea. Ann. Med. 2022, 54, 1530–1537. [Google Scholar] [CrossRef]
- Yang, F.; Sun, L.; Zhu, X.; Han, J.; Zeng, Y.; Nie, C.; Yuan, H.; Li, X.; Shi, X.; Yang, Y.; et al. Identification of new genetic variants of HLA-DQB1 associated with human longevity and lipid homeostasis-a cross-sectional study in a Chinese population. Aging 2017, 9, 2316–2333. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mostafazadeh, A.; Saravi, M.; Niaki, H.A.; Drabbels, J.; Gholipour, H.M.; Minagar, M.; Mosavi, E.; Jalali, F.; Bijani, A. HLA-DRBeta1, circulating Th1/Th2 cytokines and immunological homunculus in coronary atherosclerosis. Iran J. Allergy Asthma Immunol. 2011, 10, 11–19. [Google Scholar] [PubMed]
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-A*01:01 | 168.41 ± 41.46 (44) | 184.84 ± 58.44 (74) | 0.15 |
HLA-A*32:01 | 197.40 ± 70.69 (5) | 177.88 ± 52.52 (113) | 0.60 |
HLA-B*37:01 | 232.40 ± 48.78 (5) | 176.34 ± 52.28 (113) | 0.03 * |
HLA-B*39:01 | 201.67 ± 63.59 (6) | 177.48 ± 52.60 (112) | 0.37 |
HLA-C*03:02 | 224.29 ± 49.51 (7) | 175.84 ± 52.27 (111) | 0.02 * |
HLA-C*08:02 | 211.20 ± 63.99 (5) | 177.27 ± 52.51 (113) | 0.22 |
HLA-DQB1*02:01 | 164.43 ± 40.70 (35) | 184.74 ± 56.76 (83) | 0.03 * |
HLA-DRB1*03:01 | 162.51 ± 39.62 (35) | 185.54 ± 56.77 (83) | 0.01 * |
HLA-DRB1*14:01 | 196.67 ± 52.32 (3) | 178.24 ± 53.33 (115) | 0.57 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-A*01:01 | 97.02 ± 33.22 (44) | 112.43 ± 49.90 (74) | 0.16 |
HLA-A*32:01 | 116.80 ± 51.46 (5) | 106.24 ± 44.79 (113) | 0.57 |
HLA-B*37:01 | 141.60 ± 43.63 (5) | 105.14 ± 44.51 (113) | 0.11 |
HLA-B*39:01 | 120.50 ± 52.38 (6) | 105.95 ± 44.61 (112) | 0.46 |
HLA-C*03:02 | 143.57 ± 47.98 (7) | 104.36 ± 43.89 (111) | 0.04 * |
HLA-C*08:02 | 137.40 ± 47.15 (5) | 105.33 ± 44.52 (113) | 0.10 |
HLA-DQB1*02:01 | 95.46 ± 32.87 (35) | 111.42 ± 48.49 (83) | 0.13 |
HLA-DRB1*03:01 | 93.09 ± 31.41 (35) | 112.42 ± 48.52 (83) | 0.06 |
HLA-DRB1*14:01 | 119.67 ± 50.58 (3) | 106.35 ± 44.94 (115) | 0.54 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-C*03:04 | 144.25 ± 54.67 (4) | 179.92 ± 52.95 (114) | 0.16 |
HLA-C*04:01 | 173.10 ± 54.81 (20) | 179.86 ± 53.04 (98) | 0.68 |
HLA-C*07:02 | 166.60 ± 61.73 (10) | 179.83 ± 52.49 (108) | 0.36 |
HLA-DRB1*15:02 | 188.25 ± 65.65 (4) | 178.38 ± 53.00 (114) | 0.76 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-C*03:04 | 89.25 ± 47.30 (4) | 107.30 ± 44.90 (114) | 0.37 |
HLA-C*04:01 | 105.30 ± 48.07 (20) | 106.97 ± 44.48 (98) | 0.85 |
HLA-C*07:02 | 94.60 ± 49.27 (10) | 107.81 ± 44.55 (108) | 0.27 |
HLA-DRB1*15:02 | 114.25 ± 49.00 (4) | 106.42 ± 44.96 (114) | 0.62 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-B*08:01 | 158.14 ± 32.15 (28) | 185.11 ± 56.81 (90) | 0.04 * |
HLA-B*39:06 | 158.80 ± 67.39 (5) | 179.59 ± 52.65 (113) | 0.27 |
HLA-B*51:01 | 168.00 ± 51.29 (12) | 179.93 ± 53.47 (106) | 0.48 |
HLA-C*07:01 | 170.03 ± 41.75 (40) | 183.17 ± 57.90 (78) | 0.34 |
HLA-C*14:02 | 166.00 ± 56.34 (4) | 179.16 ± 53.26 (114) | 0.57 |
HLA-C*16:02 | 216.50 ± 103.94 (2) | 178.06 ± 52.50 (116) | 0.97 |
HLA-C*17:01 | 143.00 ± 31.30 (6) | 180.62 ± 53.50 (112) | 0.03 * |
HLA-DQB1*03:01 | 183.61 ± 58.21 (54) | 174.58 ± 48.59 (64) | 0.37 |
HLA-DRB1*15:02 | 188.25 ± 65.65 (4) | 178.38 ± 53.00 (114) | 0.76 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-B*08:01 | 90.82 ± 27.49 (28) | 111.62 ± 48.13 (90) | 0.08 |
HLA-B*39:06 | 98.40 ± 47.51 (5) | 107.05 ± 44.96 (113) | 0.53 |
HLA-B*51:01 | 97.17 ± 43.31 (12) | 107.76 ± 45.14 (106) | 0.41 |
HLA-C*07:01 | 100.28 ± 37.53 (40) | 109.97 ± 48.13 (78) | 0.36 |
HLA-C*14:02 | 102.50 ± 53.63 (4) | 106.83 ± 44.83 (114) | 0.63 |
HLA-C*16:02 | 148.50 ± 111.02 (2) | 105.97 ± 43.73 (116) | 0.93 |
HLA-C*17:01 | 78.83 ± 18.97 (6) | 108.18 ± 45.43 (112) | 0.08 |
HLA-DQB1*03:01 | 112.09 ± 49.40 (54) | 102.12 ± 40.55 (64) | 0.33 |
HLA-DRB1*15:02 | 114.25 ± 49.00 (4) | 106.42 ± 44.96 (114) | 0.62 |
HLA | Allele (+) | Allele (-) | p Value |
---|---|---|---|
Mean TC ± SD (n) | Mean TC ± SD (n) | ||
HLA-A*32:01 | 197.40 ± 70.69 (5) | 177.88 ± 52.52 (113) | 0.60 |
HLA-B*07:02 | 193.86 ± 62.66 (14) | 176.67 ± 51.77 (104) | 0.31 |
HLA-C*07:02 | 166.60 ± 61.73 (10) | 179.83 ± 52.49 (108) | 0.36 |
Mean LDL ± SD (n) | Mean LDL ± SD (n) | ||
HLA-A*32:01 | 116.80 ± 51.46 (5) | 106.24 ± 44.79 (113) | 0.57 |
HLA-B*07:02 | 123.29 ± 55.97 (14) | 104.45 ± 43.03 (104) | 0.21 |
HLA-C*07:02 | 94.60 ± 49.27 (10) | 107.81 ± 44.55 (108) | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiak, M.; Zawadzka-Starczewska, K.; Tymoniuk, B.; Stasiak, B.; Lewiński, A. Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes 2023, 14, 1209. https://doi.org/10.3390/genes14061209
Stasiak M, Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A. Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes. 2023; 14(6):1209. https://doi.org/10.3390/genes14061209
Chicago/Turabian StyleStasiak, Magdalena, Katarzyna Zawadzka-Starczewska, Bogusław Tymoniuk, Bartłomiej Stasiak, and Andrzej Lewiński. 2023. "Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent" Genes 14, no. 6: 1209. https://doi.org/10.3390/genes14061209
APA StyleStasiak, M., Zawadzka-Starczewska, K., Tymoniuk, B., Stasiak, B., & Lewiński, A. (2023). Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent. Genes, 14(6), 1209. https://doi.org/10.3390/genes14061209