Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Hematologic Analysis
2.3. Histology
2.4. Flow Cytometry
2.5. ROS Detection
2.6. Reticulocyte Count
2.7. Purification of Erythroblasts
2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.9. Western Blot
2.10. Statistical Analysis
3. Results
3.1. Nrf2/miR-144/451 Double-KO Mice Display Similar Hemolysis Levels to miR-144/451 Single-KO Mice though Double-KO Mice Generate More ROS at Baseline
3.2. miR-144/451 and Nrf2 KO Mice Differentially Respond to PHZ-Induced Acute Hemolytic Anemia
3.3. Inactivation of Nrf2 Provokes a Stronger Reticulocytosis in miR-144/451 KO Mice in Response to PHZ-Induced Acute Hemolytic Anemia
3.4. More ROS Accumulation in Newly Generated Erythrocytes from Nrf2/miR-144/451 Double-KO Mice upon PHZ Induction
3.5. Altered Expression of miR-144/451-Targeted and Nrf2-Transcribed Detoxifying Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Bettiol, A.; Galora, S.; Argento, F.R.; Fini, E.; Emmi, G.; Mattioli, I.; Bagni, G.; Fiorillo, C.; Becatti, M. Erythrocyte oxidative stress and thrombosis. Expert Rev. Mol. Med. 2022, 24, e31. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Rachmilewitz, E. The role of oxidative stress in hemolytic anemia. Curr. Mol. Med. 2008, 8, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; dos Santos, C.O.; Zhao, G.; Jiang, J.; Amigo, J.D.; Khandros, E.; Dore, L.C.; Yao, Y.; D’Souza, J.; Zhang, Z.; et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010, 24, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Chan, K.; Kan, Y.W.; Johnson, J.A. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proc. Natl. Acad. Sci. USA 2004, 101, 9751–9756. [Google Scholar] [CrossRef]
- Kawatani, Y.; Suzuki, T.; Shimizu, R.; Kelly, V.P.; Yamamoto, M. Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood 2011, 117, 986–996. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Dore, L.C.; Amigo, J.D.; Dos Santos, C.O.; Zhang, Z.; Gai, X.; Tobias, J.W.; Yu, D.; Klein, A.M.; Dorman, C.; Wu, W.; et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl. Acad. Sci. USA 2008, 105, 3333–3338. [Google Scholar] [CrossRef]
- Patrick, D.M.; Zhang, C.C.; Tao, Y.; Yao, H.; Qi, X.; Schwartz, R.J.; Jun-Shen Huang, L.; Olson, E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 2010, 24, 1614–1619. [Google Scholar] [CrossRef]
- Rasmussen, K.D.; Simmini, S.; Abreu-Goodger, C.; Bartonicek, N.; Di Giacomo, M.; Bilbao-Cortes, D.; Horos, R.; Von Lindern, M.; Enright, A.J.; O’Carroll, D. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 2010, 207, 1351–1358. [Google Scholar] [CrossRef]
- Fang, X.; Shen, F.; Lechauve, C.; Xu, P.; Zhao, G.; Itkow, J.; Wu, F.; Hou, Y.; Wu, X.; Yu, L.; et al. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica 2018, 103, 406–416. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ru, X.; Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef] [PubMed]
- Vomund, S.; Schäfer, A.; Parnham, M.J.; Brüne, B.; von Knethen, A. Nrf2, the master regulator of anti-oxidative responses. Int. J. Mol. Sci. 2017, 18, 2772. [Google Scholar] [CrossRef] [PubMed]
- Gbotosho, O.T.; Kapetanaki, M.G.; Ross, M.; Ghosh, S.; Weidert, F.; Bullock, G.C.; Watkins, S.; Ofori-Acquah, S.F.; Kato, G.J. Nrf2 deficiency in mice attenuates erythropoietic stress-related macrophage hypercellularity. Exp. Hematol. 2020, 84, 19–28.e14. [Google Scholar] [CrossRef]
- Xu, L.; Wu, F.; Yang, L.; Wang, F.; Zhang, T.; Deng, X.; Zhang, X.; Yuan, X.; Yan, Y.; Li, Y.; et al. miR-144/451 inhibits c-Myc to promote erythroid differentiation. FASEB J. 2020, 34, 13194–13210. [Google Scholar] [CrossRef]
- Keleku-Lukwete, N.; Suzuki, M.; Yamamoto, M. An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment. Antioxid. Redox Signal. 2018, 29, 1746–1755. [Google Scholar] [CrossRef]
- Renard, D.; Rosselet, A. Drug-induced hemolytic anemia: Pharmacological aspects. Transfus. Clin. Biol. 2017, 24, 110–114. [Google Scholar] [CrossRef]
- Karimipour, M.; Dibayi, Z.; Ahmadi, A.; Zirak Javanmard, M.; Hosseinalipour, E. The protective effect of vitamin C on phenylhydrazine-induced hemolytic anemia on sperm quality and in-vitro embryo development in mice. Int. J. Reprod. Biomed. 2018, 16, 3685. [Google Scholar] [CrossRef]
- Nemoto, S.; Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002, 295, 2450–2452. [Google Scholar] [CrossRef]
- Hartwig, J.; Loebel, M.; Steiner, S.; Bauer, S.; Karadeniz, Z.; Roeger, C.; Skurk, C.; Scheibenbogen, C.; Sotzny, F. Metformin attenuates ROS via FOXO3 activation in immune cells. Front. Immunol. 2021, 12, 581799. [Google Scholar] [CrossRef]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, J.; Almoiliqy, M.; Wang, Y.; Liu, Z.; Yang, X.; Lu, X.; Meng, Q.; Peng, J.; Lin, Y.; et al. Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway. Oxid. Med. Cell. Longev. 2021, 2021, 5147069. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Y.; Han, L.; Fu, L.; Mei, X.; Wang, J.; Itkow, J.; Elabid, A.E.I.; Pang, L.; Yu, D. Activating and sustaining c-Myc by depletion of miR-144/451 gene locus contributes to B-lymphomagenesis. Oncogene 2018, 37, 1293–1307. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.A.; Sanalkumar, R.; O’Geen, H.; Linnemann, A.K.; Chang, C.J.; Bouhassira, E.E.; Farnham, P.J.; Keles, S.; Bresnick, E.H. Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 2012, 32, 226–239. [Google Scholar] [CrossRef]
- McIver, S.C.; Kang, Y.A.; DeVilbiss, A.W.; O’Driscoll, C.A.; Ouellette, J.N.; Pope, N.J.; Camprecios, G.; Chang, C.J.; Yang, D.; Bouhassira, E.E.; et al. The exosome complex establishes a barricade to erythroid maturation. Blood 2014, 124, 2285–2297. [Google Scholar] [CrossRef]
- Ramot, Y.; Koshkaryev, A.; Goldfarb, A.; Yedgar, S.; Barshtein, G. Phenylhydrazine as a partial model for beta-thalassaemia red blood cell hemodynamic properties. Br. J. Haematol. 2008, 140, 692–700. [Google Scholar] [CrossRef]
- Matte, A.; Low, P.S.; Turrini, F.; Bertoldi, M.; Campanella, M.E.; Spano, D.; Pantaleo, A.; Siciliano, A.; De Franceschi, L. Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress. Free Radic. Biol. Med. 2010, 49, 457–466. [Google Scholar] [CrossRef]
Index | WT | mKO | NKO | N/mKO |
---|---|---|---|---|
RBC (×1012/L) | 9.58 ± 0.06 | 8.51 ± 0.89 * | 9.53 ± 0.19 | 8.64 ± 0.74 * |
Hb (g/L) | 137.5 ± 3.87 | 124.25 ± 1.71 * | 132.7 ± 12.09 | 124.33 ± 2.52 * |
HCT (%) | 46.43 ± 1.2 | 42.28 ± 1.73 ** | 44.07 ± 4.8 | 45.65 ± 0.69 # |
RDW (%) | 17.87 ± 0.06 | 23.15 ± 1.42 ** | 19.15 ± 0.85 * | 23.18 ± 0.17 ** |
MCV (fl) | 50.6 ± 0.88 | 45.46 ± 2.31 ** | 50.57 ± 1.42 ## | 47.45 ± 0.49 ** |
MCH (pg) | 14.75 ± 0.34 | 13.45 ± 0.87 * | 15.1 ± 0.48 ## | 13.75 ± 0.21 * |
MCHC (g/L) | 293.75 ± 4.57 | 295.75 ± 6.6 | 294.75 ± 3.3 | 290.67 ± 2.08 |
n | 4 | 5 | 5 | 4 |
Index | WT | mKO | NKO | N/mKO |
---|---|---|---|---|
RBC (×1012/L) | 6.25 ± 0.29 | 4.98 ± 0.12 ** | 5.5 ± 0.37 *# | 4.63 ± 0.04 ** |
Hb (g/L) | 140.67 ± 4.93 | 109.33 ± 2.31 ** | 133.5 ± 3.54 # | 102.5 ± 3.54 **# |
HCT (%) | 41.43 ± 0.67 | 40.33 ± 1.53 | 38.1 ± 0.28 * | 39.5 ± 0.71 * |
RDW (%) | 37.67 ± 2.08 | 37.33 ± 2.08 | 37.85 ± 1.2 | 31 ± 1.41 *# |
MCV (fl) | 67 ± 4.59 | 81.3 ± 5.2 * | 62.87 ± 3.53 ## | 84.95 ± 1.91 ** |
MCH (pg) | 24.13 ± 0.25 | 22 ± 0.61 ** | 23.33 ± 1.04 | 21.75 ± 0.35 ** |
MCHC (g/L) | 361.67 ± 22.01 | 271 ± 13.08 ** | 372 ± 38.43 ## | 255 ± 1.41 ** |
n | 3 | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; He, S.; Ling, L.; Wang, F.; Xu, L.; Fang, L.; Wu, F.; Zhou, S.; Yang, F.; Wei, H.; et al. Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia. Genes 2023, 14, 1011. https://doi.org/10.3390/genes14051011
Yang L, He S, Ling L, Wang F, Xu L, Fang L, Wu F, Zhou S, Yang F, Wei H, et al. Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia. Genes. 2023; 14(5):1011. https://doi.org/10.3390/genes14051011
Chicago/Turabian StyleYang, Lei, Sheng He, Ling Ling, Fangfang Wang, Lei Xu, Lei Fang, Fan Wu, Shuting Zhou, Fan Yang, Hongwei Wei, and et al. 2023. "Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia" Genes 14, no. 5: 1011. https://doi.org/10.3390/genes14051011
APA StyleYang, L., He, S., Ling, L., Wang, F., Xu, L., Fang, L., Wu, F., Zhou, S., Yang, F., Wei, H., & Yu, D. (2023). Crosstalk between miR-144/451 and Nrf2 during Recovery from Acute Hemolytic Anemia. Genes, 14(5), 1011. https://doi.org/10.3390/genes14051011