An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sample and Tissue Collection
2.2. Measurement of Tissue MT2
2.3. Single-Nucleotide Polymorphism Analysis
2.4. Statistical Analysis
3. Results
3.1. Tissue MT2 Concentrations
3.2. Associations between SNPs and Tissue MT2 Concentration
3.3. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2015, 387, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Endometrial Cancer Statistics; World Cancer Research Fund International. Endometrial Cancer Statistics|World Cancer Research Fund International. Available online: wcrf.org (accessed on 16 March 2023).
- Agency for Research on Cancer. Cancer Tomorrow (Website). Available online: https://gco.iarc.fr/tomorrow/graphic-isotype?type=1&population=900&mode=population&sex= (accessed on 25 April 2021).
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Neilson, H.K.; Lynch, B.M. State of the epidemiological evidence on physical activity and cancer prevention. Eur. J. Cancer 2010, 46, 2593–2604. [Google Scholar] [CrossRef]
- Cust, A.E. Physical Activity and Gynecologic Cancer Prevention. Recent Results Cancer Res. 2011, 186, 159–185. [Google Scholar] [CrossRef]
- Vašák, M.; Hasler, D.W. Metallothioneins: New Functional and Structural Insights. Curr. Opin. Chem. Biol. 2000, 4, 177–183. [Google Scholar]
- Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003, 192, 95–117. [Google Scholar] [CrossRef]
- Eckschlager, T.; Adam, V.; Hrabeta, J.; Figova, K.; Kizek, R. Metallothioneins and Cancer. Curr. Protein Pept. Sci. 2009, 10, 360–375. [Google Scholar] [PubMed]
- Sato, M.; Bremner, I. Oxygen free-radicals and metallothionein. Free Radic. Biol. Med. 1993, 14, 325–337. [Google Scholar] [CrossRef]
- Aschner, M.; Conklin, D.R.; Yao, C.P.; Allen, J.W.; Tan, K.H. Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res. 1998, 813, 254–261. [Google Scholar] [PubMed]
- Namdarghanbari, M.; Wobig, W.; Krezoski, S.; Tabatabai, N.; Petering, D. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J. Biol. Inorg. Chem. 2011, 16, 1087–1101. [Google Scholar]
- Cai, L.; Koropatnick, J.; Cherian, M.G. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in-vitro. Chem.-Biol. Interact. 1995, 96, 143–155. [Google Scholar] [PubMed]
- Si, M.; Lang, J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef]
- Gumulec, J.; Raudenska, M.; Adam, V.; Kizek, R.; Masarik, M. Metallothionein—Immunohistochemical Cancer Biomarker: A Meta-Analysis. PLoS ONE 2014, 9, e85346. [Google Scholar] [CrossRef]
- Pedersen, M.; Larsen, A.; Stoltenberg, M.; Penkowa, M. The role of metallothionein in oncogenesis and cancer prognosis. Prog. Histochem. Cytochem. 2009, 44, 29–64. [Google Scholar] [CrossRef]
- Cherian, M.G.; Jayasurya, A.; Bay, B.H. Metallothioneins in Human Tumors and Potential Roles in Carcinogenesis. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2003, 533, 201–209. [Google Scholar] [CrossRef]
- Theocharis, S.E.; Margeli, A.P.; Klijanienko, J.T.; Kouraklis, G.P. Metallothionein expression in human neoplasia. Histopathology 2004, 45, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Verma, M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Futur. Oncol. 2016, 12, 1645–1664. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.M.; Potter, J.D.; White, E.; Ulrich, C.M.; Cardon, L.R.; Peters, U. Genetic Susceptibility to Cancer: The Role of Polymorphisms in Candidate Genes. JAMA 2008, 299, 2423–2436. [Google Scholar] [CrossRef] [Green Version]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP Guidelines for the Management of Patients with Endometrial Carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar]
- Townsend, M.H.; Ence, Z.E.; Felsted, A.M.; Parker, A.C.; Piccolo, S.R.; Robison, R.A.; O’Neill, K.L. Potential new biomarkers for endometrial cancer. Cancer Cell Int. 2019, 19, 19. [Google Scholar] [CrossRef]
- Jacobs, I.; Gentry-Maharaj, A.; Burnell, M.; Manchanda, R.; Singh, N.; Sharma, A.; Ryan, A.; Seif, M.W.; Amso, N.; Turner, G.; et al. Sensitivity of transvaginal ultrasound screening for endometrial cancer in postmenopausal women: A case-control study within the UKCTOCS cohort. Lancet Oncol. 2010, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, B.; Granberg, S.; Wikland, M.; Ylöstalo, P.; Torvid, K.; Marsal, K.; Valentin, L. Transvaginal ultrasonography of the endometrium in women with postmenopausal bleeding—A Nordic multicenter study. Am. J. Obstet. Gynecol. 1995, 172, 1488–1494. [Google Scholar] [CrossRef]
- Hengstler, J.; Pilch, H.; Schmidt, M.; Dahlenburg, H.; Schiffer, I.; Oesch, F.; Knapstein, P.; Kaina, B.; Tanner, B. Metallothionein expression in ovarian cancer in relation to histopathological parameters and molecular markers of prognosis. Int. J. Cancer 2001, 95, 121–127. [Google Scholar] [CrossRef]
- Miles, A.T.; Hawksworth, G.M.; Beattie, J.H.; Rodilla, V. Induction, Regulation, Degradation, and Biological Significance of Mammalian Metallothioneins. Crit. Rev. Biochem. Mol. Biol. 2000, 35, 35–70. [Google Scholar] [CrossRef] [PubMed]
- Haq, F.; Mahoney, M.; Koropatnick, J. Signaling Events for Metallothionein Induction. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2003, 533, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.E.; Bohr, A.; Penkowa, M. The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark. Insights 2006, 1, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Surowiak, P.; Materna, V.; Kaplenko, I.; Spaczyński, M.; Dietel, M.; Lage, H.; Zabel, M. Augmented expression of metallothionein and glutathione S-transferase pi as unfavourable prognostic factors in cisplatin-treated ovarian cancer patients. Virchows Arch. 2005, 447, 626–633. [Google Scholar] [CrossRef]
- Goulding, H.; Jasani, B.; Pereira, H.; Reid, A.; Galea, M.; Bell, J.A.; Elston, C.W.; Robertson, J.F.; Blamey, R.W.; Nicholson, R.A.; et al. Metallothionein expression in human breast cancer. Br. J. Cancer 1995, 72, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M.G.; Banerjee, D.; Kocha, W.; Feld, R.; Stitt, L.W.; Cherian, M.G. Metallothionein expression in patients with small cell carcinoma of the lung: Correlation with other molecular markers and clinical outcome. Cancer 2001, 92, 836–842. [Google Scholar] [CrossRef]
- Tüzel, E.; Kirkali, Z.; Yörükoğlu, K.; Mungan, M.U.; Sade, M. Metallothionein Expression in Renal Cell Carcinoma: Subcellular Localization and Prognostic Significance. J. Urol. 2001, 165, 1710–1713. [Google Scholar] [CrossRef]
- Wülfing, C.; van Ahlen, H.; Eltze, E.; Piechota, H.; Hertle, L.; Schmid, K.-W. Metallothionein in bladder cancer: Correlation of overexpression with poor outcome after chemotherapy. World J. Urol. 2007, 25, 199–205. [Google Scholar] [CrossRef]
- Cardoso, S.V.; Barbosa, H.M.; Candellori, I.M.; Loyola, A.M.; Aguiar, M.F. Prognostic impact of metallothionein on oral squamous cell carcinoma. Virchows Arch. 2002, 441, 174–178. [Google Scholar] [CrossRef]
- Weinlich, G.; Eisendle, K.; Hassler, E.; Baltaci, M.; Fritsch, P.O.; Zelger, B. Metallothionein—Overexpression as a highly significant prognostic factor in melanoma: A prospective study on 1270 patients. Br. J. Cancer 2006, 94, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Ioachim, E.E.; Kitsiou, E.; Carassavoglou, C.; Stefanaki, S.; Agnantis, N.J. Immunohistochemical localization of metallothionein in endometrial lesions. J. Pathol. 2000, 191, 269–273. [Google Scholar] [CrossRef]
- Szydłowska, I.; Grabowska, M.; Nawrocka-Rutkowska, J.; Piasecka, M.; Starczewski, A. Markers of Cellular Proliferation, Apoptosis, Estrogen/Progesterone Receptor Expression and Fibrosis in Selective Progesterone Receptor Modulator (Ulipristal Acetate)-Treated Uterine Fibroids. J. Clin. Med. 2021, 10, 562. [Google Scholar] [CrossRef]
- Vitale, S.G.; Haimovich, S.; Laganà, A.S.; Alonso, L.; Sardo, A.D.S.; Carugno, J. Endometrial polyps. An evidence-based diagnosis and management guide. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 70–77. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.V., Jr.; Sherman, M.E.; Rush, B.B.; Ronnett, B.M.; Ioffe, O.B.; Duggan, M.A.; Glass, A.G.; Richesson, D.A.; Chatterjee, N.; Langholz, B. Absolute Risk of Endometrial Carcinoma During 20-Year Follow-Up Among Women with Endometrial Hyperplasia. J. Clin. Oncol. 2010, 28, 788–792. [Google Scholar] [CrossRef]
- Baak, J.P.; Mutter, G.L.; Robboy, S.J.; Van Diest, P.J.; Uyterlinde, A.M.; Ørbo, A.; Palazzo, J.P.; Fianne, B.; Løvslett, K.; Burger, C.; et al. The molecular genetics and morphometry-based endometrial intraepithelial neoplasia classification system predicts disease progression in endometrial hyperplasia more accurately than the 1994 World Health Organization classification system. Cancer 2005, 103, 2304–2312. [Google Scholar] [CrossRef]
- Klimek, M.; Wicherek, L.; Galazka, K.; Tetlak, T.; Popiela, T.J.; Kulczycka, M.; Rudnicka-Sosin, L.; Dutsch-Wicherek, M. Cycle dependent expression of endometrial metallothionein. Neuro Endocrinol. Lett. 2005, 26, 663–666. [Google Scholar]
- Krause, M.; Li, M.; Garza-Cavazos, A.; de Mola, J.L.; McAsey, M. Metallothionein expression and regulation in human endometrium. Fertil. Steril. 2011, 96, S145–S146. [Google Scholar] [CrossRef]
- Levy, B.S. Modern management of uterine fibroids. Acta Obstet. Gynecol. Scand. 2008, 87, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, H.; Sato, Y. Metallothionein 1 is a Downstream Target of Vascular Endothelial Zinc Finger 1 (VEZF1) in Endothelial Cells and Participates in the Regulation of Angiogenesis. Endothelium 2005, 12, 163–170. [Google Scholar] [CrossRef] [PubMed]
- EOstrakhovitch, A.; Olsson, P.E.; von Hofsten, J.; Cherian, M.G. p53 mediated regulation of metallothionein transcription in breast cancer cells. J. Cell Biochem. 2007, 102, 1571–1583. [Google Scholar]
- Vermij, L.; Léon-Castillo, A.; Singh, N.; Powell, M.E.; Edmondson, R.J.; Genestie, C.; Khaw, P.; Pyman, J.; McLachlin, C.M.; Ghatage, P.; et al. p53 immunohistochemistry in endometrial cancer: Clinical and molecular correlates in the PORTEC-3 trial. Mod. Pathol. 2022, 35, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Formigari, A.; Irato, P.; Santon, A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 443–459. [Google Scholar] [PubMed]
- Wang, J.; Huang, P.; Zhao, W.; Ren, W.; Ai, L.; Wu, L. Quantitative assessment of the association of polymorphisms in the metallothionein 2A gene with cancer risk. J. Int. Med. Res. 2020, 48, 0300060520947937. [Google Scholar] [CrossRef]
- Liu, D.; Wang, M.; Tian, T.; Wang, X.-J.; Kang, H.-F.; Jin, T.-B.; Zhang, S.-Q.; Guan, H.-T.; Yang, P.-T.; Liu, K.; et al. Genetic polymorphisms (rs10636 and rs28366003) in metallothionein 2A increase breast cancer risk in Chinese Han population. Aging 2017, 9, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starska, K.; Krześlak, A.; Forma, E.; Olszewski, J.; Lewy-Trenda, I.; Osuch-Wójcikiewicz, E.; Bryś, M. Genetic polymorphism of metallothionein 2A and risk of laryngeal cancer in a Polish population. Med. Oncol. 2014, 31, 75. [Google Scholar] [CrossRef] [PubMed]
- Krześlak, A.; Forma, E.; Jóźwiak, P.; Szymczyk, A.; Smolarz, B.; Romanowicz-Makowska, H.; Różański, W.; Bryś, M. Metallothionein 2A genetic polymorphisms and risk of ductal breast cancer. Clin. Exp. Med. 2012, 14, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Forma, E.; Krzeslak, A.; Wilkosz, J.; Jozwiak, P.; Szymczyk, A.; Rozanski, W.; Brys, M. Metallothionein 2A genetic polymorphisms and risk of prostate cancer in a Polish population. Cancer Genet. 2012, 205, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.; Garcia, M.; Alves, P.; Sousa, E.; Pimentel, L.; Barbosa, L.; Loyola, A.; Goulart, L.; Faria, P.; Cardoso, S. Revisiting the metallothionein genes polymorphisms and the risk of oral squamous cell carcinoma in a Brazilian population. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e334–e340. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Huang, J.; Tan, P.-H.; Bay, B.-H. Clinicopathological significance of metallothioneins in breast cancer. Pathol. Oncol. Res. 2004, 10, 74–79. [Google Scholar] [CrossRef]
- Yang, S.; Thiel, K.W.; Leslie, K.K. Progesterone: The ultimate endometrial tumor suppressor. Trends Endocrinol. Metab. 2011, 22, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Gao, Y.; Zeng, K.; Yin, Y.; Zhao, M.; Wei, J.; Chen, Q. The levels of the sex hormones are not different between type 1 and type 2 endometrial cancer. Sci. Rep. 2016, 6, 39744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen Signaling in Endometrial Cancer: A Key Oncogenic Pathway with Several Open Questions. Horm. Cancer 2019, 10, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Białkowska, K.; Marciniak, W.; Muszyńska, M.; Baszuk, P.; Gupta, S.; Jaworska-Bieniek, K.; Sukiennicki, G.; Durda, K.; Gromowski, T.; Lener, M.; et al. Polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13 and MT2A do not contribute to breast, lung and colon cancer risk in polish population. Hered. Cancer Clin. Pract. 2020, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Krześlak, A.; Forma, E.; Chwatko, G.; Jóźwiak, P.; Szymczyk, A.; Wilkosz, J.; Różański, W.; Bryś, M. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol. Appl. Pharmacol. 2013, 268, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Shokrzadeh, M.; Mohammadpour, A.; Ghassemi-Barghi, N.; Hoseini, V.; Abediankenari, S.; Tabari, Y.S. Metallothionein-2a (Rs1610216&rs28366003) Gene Polymorphisms and the Risk of Stomach Adenocarcinoma. Arq. Gastroenterol. 2019, 56, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Nakane, H.; Hirano, M.; Ito, H.; Hosono, S.; Oze, I.; Matsuda, F.; Tanaka, H.; Matsuo, K. Impact of metallothionein gene polymorphisms on the risk of lung cancer in a Japanese population. Mol. Carcinog. 2014, 54, E122–E128. [Google Scholar] [CrossRef]
- Vermij, L.; Smit, V.; Nout, R.; Bosse, T. Incorporation of molecular characteristics into endometrial cancer management. Histopathology 2019, 76, 52–63. [Google Scholar] [CrossRef]
Characteristics | Number of Patients |
---|---|
Age | |
<50 | 47 |
>50–60 | 35 |
>60 | 29 |
Cancer | 21 |
Staging | |
Figo 1–2 | 19 |
Figo 3–4 | 2 |
Grading | |
1 | 1 |
2 | 16 |
3 | 4 |
Non-cancer | 89 |
Endometrial polyp | 48 |
Uterine fibroma | 25 |
Normal endometrium tissue | 16 |
BMI | |
<25 | 40 |
>25 | 70 |
Cigarette smoking | |
Yes | 7 |
No | 103 |
Menopause | |
Yes | 66 |
No | 44 |
Lymph node metastasis | |
Yes | 1 |
No | 20 |
Type 2 Diabetes | |
Yes | 15 |
No | 95 |
Hypothyroidism | |
Yes | 18 |
No | 92 |
Polymorphism | Genotype | Studied Population (n) | MT2 | p-Value | |
---|---|---|---|---|---|
Below Median (n) | Above Median (n) | ||||
MT1A | GG | 37 | 0.194 | 0.227 | - |
AG | 31 | 0.237 | 0.239 | 0.941 | |
AA | 4 | 0.174 | 0.197 | 0.913 | |
MT2A | AA | 66 | 0.200 | 0.235 | - |
AG | 6 | 0.362 | 0.195 | 0.730 | |
GG | 0 | - | - | - | |
MT1L | GG | 37 | 0.213 | 0.255 | - |
CC | 5 | - | 0.180 | - | |
GC | 30 | 0.201 | 0.215 | 0.950 |
Polymorphism | Genotype | n of Patients | Endometrial Cancer | OR | Lower 95% CI | Upper 95% CI | p-Value |
---|---|---|---|---|---|---|---|
MT1A | GG | 50 | 11 | 1 | - | - | - |
AG | 53 | 8 | 0.630303 | 0.230343 | 1.724742 | 0.362382 | |
AA | 7 | 1 | 0.590909 | 0.064161 | 5.442173 | 0.453685 | |
MT2A | AA | 102 | 19 | 1 | - | - | - |
AG | 8 | 1 | 0.624060 | 0.072417 | 5.377889 | 0.665234 | |
GG | 0 | 0 | - | - | - | - | |
MT1L | GG | 59 | 12 | 1 | - | - | - |
CC | 7 | 0 | - | - | - | 0.187125 | |
GC | 44 | 8 | 0.870370 | 0.321998 | 2.352640 | 0.667486 |
Endometrial Cancer | Control Group | OR | Lower 95% CI | Upper 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|
Age | Above vs. Below Median | 17 | 39 | 7.26 | 1.99 | 26.57 | 0.001 |
Menopause | Yes vs. No | 19 | 45 | 14.77 | 1.89 | 115.81 | 0.001 |
Grading | 2–3 vs. 1 | 17 | 2 | - | - | - | 0.733 |
Staging | 3–4 vs. 1–2 | 1 | 0 | - | - | - | 0.773 |
Smoking | Yes vs. No | 3 | 4 | 3.70 | 0.76 | 18.08 | 0.086 |
Diabetes | Yes vs. No | 10 | 5 | 16.60 | 4.72 | 58.41 | <0.0001 |
MT2 level | Above vs. Below Median | 9 | 27 | 0.75 | 0.47 | 3.72 | 0.599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, K.; Kapczuk, P.; Witczak, G.; Tousty, P.; Bosiacki, M.; Kurzawski, M.; Chlubek, D.; Cymbaluk-Płoska, A. An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies. Genes 2023, 14, 773. https://doi.org/10.3390/genes14030773
Michalczyk K, Kapczuk P, Witczak G, Tousty P, Bosiacki M, Kurzawski M, Chlubek D, Cymbaluk-Płoska A. An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies. Genes. 2023; 14(3):773. https://doi.org/10.3390/genes14030773
Chicago/Turabian StyleMichalczyk, Kaja, Patrycja Kapczuk, Grzegorz Witczak, Piotr Tousty, Mateusz Bosiacki, Mateusz Kurzawski, Dariusz Chlubek, and Aneta Cymbaluk-Płoska. 2023. "An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies" Genes 14, no. 3: 773. https://doi.org/10.3390/genes14030773
APA StyleMichalczyk, K., Kapczuk, P., Witczak, G., Tousty, P., Bosiacki, M., Kurzawski, M., Chlubek, D., & Cymbaluk-Płoska, A. (2023). An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies. Genes, 14(3), 773. https://doi.org/10.3390/genes14030773