Taste Preference-Related Genetic Polymorphisms Modify Alcohol Consumption Behavior of the Hungarian General and Roma Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Sample Representative of the Hungarian General Population of Northeast Hungary
2.1.2. Sample Representative of Hungarian Roma of Northeast Hungary Living in Segregated Colonies
2.2. Alcohol Consumption Behavior Assessment
2.3. Selection of Single Nucleotide Polymorphisms
2.4. DNA Preparation and Genotype Assessment
2.5. Statistical Analysis
3. Results
3.1. Allele and Genotype Comparisons between the Study Populations
3.2. Association of SNPs with Alcohol Consumption Phenotypes
3.2.1. Sample Representative of the Hungarian General Population
3.2.2. Sample Representative of Hungarian Roma Living in Segregated Colonies
3.3. Aggregated Effect of SNPs on Alcohol Consumption Phenotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- GBD Alcohol Collaborators. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [Google Scholar] [CrossRef]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- White, A.M.; Castle I-Jen, P.; Powell, P.A.; Hingson, R.W.; Koob, G.F. Alcohol-related deathsduring the COVID-19 pandemic. JAMA 2022, 327, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health 2018; Licence: CC BY-NC-SA 3.0IGO; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- OECD. Health at a Glance 2021:OECD Indicators; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- OECD; European Union. Health at a Glance: Europe 2020: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe. Status Report on Alcohol Consumption, Harm and Policy Responses in 30 European Countries 2019. Available online: https://www.euro.who.int/__data/assets/pdf_file/0019/411418/Alcohol-consumption-harm-policy-responses-30-European-countries-2019.pdf (accessed on 6 June 2022).
- Chartier, K.; Caetano, R. Ethnicity and health disparities in alcohol research. Alcohol Res. Health 2010, 33, 152–160. [Google Scholar] [PubMed]
- World Health Organization, Regional Office for Europe. Alcohol and Inequities. Guidance for Addressing Inequities in Alcohol-Related Harm; WHO: Geneva, Switzerland, 2014; Available online: https://www.euro.who.int/__data/assets/pdf_file/0003/247629/Alcohol-and-Inequities.pdf (accessed on 25 April 2022).
- Babinská, I.; Gecková, A.M.; Jarcuska, P.; Pella, D.; Mareková, M.; Stefkova, G.; Veselská, Z.D.; HepaMeta, T. Does the population living in Roma settlements differ in physical activity, smoking and alcohol consumption from the majority population in Slovakia. Cent. Eur. J. Public Health 2014, 22 (Suppl. l), S22–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diabelková, J.; Rimárová, K.; Urdzík, P.; Dorko, E.; Bušová, A. Risk factors of preterm birth and low birth weight neonates among Roma and non-Roma mothers. Cent. Eur. J. Public Health 2018, 26, S25–S31. [Google Scholar] [CrossRef] [Green Version]
- Cace, S.; Cantarji, V.; Sali, N.; Alla, M. Roma in the Republic of Moldova; United Nations Development Programme Chisnau: Chișinău, Moldova, 2007; Available online: https://www.researchgate.net/profile/Sorin-Cace/publication/293487948_Roma_in_the_Republic_of_Moldova/links/56b8ea2b08ae39ea9905b3ec/Roma-in-the-Republic-of-Moldova.pdf (accessed on 26 May 2022).
- Ekuklu, G.; Deveci, S.; Eskiocak, M.; Berberoglu, U.; Saltik, A. Alcoholism prevalence and some related factors in Edirne, Turkey. Yonsei Med. J. 2004, 45, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Kanapeckienė, V.; Valintėlienė, R.; Beržanskytė, A.; Kėvalas, R.; Supranowicz, P. Health of Roma children in Vilnius and Ventspils. Medicina 2009, 45, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Chomynová, P.; Kozák, J.; Mravčík, V. Substance use in Roma population in contact with social workers in the Czech Republic: A cross-sectional questionnaire survey. J. Ethn. Subst. Abus. 2021, 20, 275–294. [Google Scholar] [CrossRef]
- Carrasco-Garrido, P.; López de Andrés, A.; Hernández Barrera, V.; Jiménez-Trujillo, I.; Jiménez-García, R. Health status of Roma women in Spain. Eur. J. Public Health 2011, 21, 793–798. [Google Scholar] [CrossRef]
- La Parra, D. Towards Equity in Health: Comparative Study of National Health Surveys in the Roma Population and the General Population in Spain, 2006; Ministerio de Sanidad y Consumo: Madrid, Spain, 2009. [Google Scholar]
- Zelko, E. Differences in alcohol consumption habits between Roma and non-Roma in Northeastern Slovenia. Slov. Nurs. Review. 0bzornik Zdr. Nege 2017, 51, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Sárváry, A.; Kósa, Z.; Jávorné, R.E.; Gyulai, A.; Takács, P.; Sándor, J.; Sárváry, A.; Németh, Á.; Halmai, R.; Ádány, R. Socioeconomic status, health related behaviour, and self-rated health of children living in Roma settlements in Hungary. Cent. Eur. J. Public Health 2019, 27, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerevich, J.; Bácskai, E.; Czobor, P.; Szabó, J. Substance use in Roma and non-Roma adolescents. J. Nerv. Ment. Dis. 2010, 198, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Sárváry, A.; Kósa, Z.; Jávorné Erdei, R. Telepszerü körülmények között élö gyermekek egészségmagatartás Északkelet-Magyarországon {Article in Hungarian: Health behaviour of children living in colonies in North-Eastern Hungary}. Népeü 2012, 90, 230–244. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council the European Economic and Social Committee and the Committee of the Regions Framework for National Roma Integration Strategies up to 2020; European Commission: Brussels, Belgium, 2011; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0173&from=en (accessed on 26 May 2022).
- Schleinstein, N.S.D.; Wenninger, A.; Wilde, A. (Eds.) Roma in Central and Eastern Europe; GESIS Leibniz Institute for the Social Siences, Service Agency Eastern Europe: Berlin, Germany, 2009; pp. 12–16. [Google Scholar]
- Pásztor, I.Z.; Pénzes, J.; Tátrai, P.; Pálóczi, Á. The number and spatial distribution of the Roma population in Hungary–in the light of different approaches. Folia Geogr. 2016, 58, 5. [Google Scholar]
- European Union Agency for Fundamental Rights. The Situation of Roma in 11 EU Member States: Survey Results at a Glance. Available online: https://fra.europa.eu/sites/default/files/fra_uploads/2099-FRA-2012-Roma-at-a-glance_EN.pdf (accessed on 26 May 2022).
- Bartoš, V.; Bauer, M.; Chytilová, J.; Matějka, F. Attention discrimination: Theory and field experiments with monitoring information acquisition. Am. Econ. Rev. 2016, 106, 1437–1475. [Google Scholar] [CrossRef] [Green Version]
- Ciaian, P.; Kancs, d.A. Causes of the Social and Economic Marginalisation: The Role of Social Mobility Barriers for Roma; EERI Research Paper Series; EERI RP 2016/03; Economics and Econometrics Research Institute (EERI): Brussels, Belgium, 2016. [Google Scholar]
- European Commission. Directorate-General for Health and Consumers. Roma Health report, Health Status of the Roma Population: Data Collection in the Member States of the European Union, Publications Office. 2015. Available online: https://data.europa.eu/doi/10.2772/3140 (accessed on 26 May 2022).
- Colombini, M.; Rechel, B.; Mayhew, S.H. Access of Roma to sexual and reproductive health services: Qualitative findings from Albania, Bulgaria and Macedonia. Glob. Public Health 2012, 7, 522–534. [Google Scholar] [CrossRef]
- Kühlbrandt, C.; Footman, K.; Rechel, B.; McKee, M. An examination of Roma health insurance status in central and eastern Europe. Eur. J. Public Health 2014, 24, 707–712. [Google Scholar] [CrossRef] [Green Version]
- McFadden, A.; Siebelt, L.; Gavine, A.; Atkin, K.; Bell, K.; Innes, N.; Jones, H.; Jackson, C.; Haggi, H.; MacGilivray, S. Gypsy, Roma and Traveller access to and engagement with health services: A systematic review. Eur. J. Public Health 2018, 28, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Kósa, Z.; Széles, G.; Kardos, L.; Kósa, K.; Németh, R.; Országh, S.; Fésüs, G.; McKee, M.; Adány, R.; Vokó, Z. A comparative health survey of the inhabitants of Roma settlements in Hungary. Am. J. Public Health 2007, 97, 853–859. [Google Scholar] [CrossRef]
- Verhulst, B.; Neale, M.C.; Kendler, K.S. The heritability of alcohol use disorders: A meta-analysis of twin and adoption studies. Psychol. Med. 2015, 45, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Morozova, T.V.; Goldman, D.; Mackay, T.F.; Anholt, R.R.H. The genetic basis of alcoholism: Multiple phenotypes, many genes, complex networks. Genome Biol. 2012, 13, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranzler, H.R.; Zhou, H.; Kember, R.L.; Vickers Smith, R.; Justice, A.C.; Damrauer, S.; Tsao, P.S.; Klarin, D.; Baras, A.; Reid, J.; et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 2019, 10, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibodeau, M.; Pickering, G.J. The role of taste in alcohol preference, consumption and risk behavior. Crit. Rev. Food Sci. Nutr. 2019, 59, 676–692. [Google Scholar] [CrossRef] [PubMed]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinuthalakshmi, K.S.; Nizamuddin, S.; Mustak, M.S. TAS2R38 gene polymorphism and its association with taste perception, alcoholism and tobacco chewing among the Koraga-a primitive tribal population of Southwest coast of India. Meta Gene 2019, 20, 100549. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Roman, S.; Martinez-Lopez, E.; Gonzalez-Aldaco, K.; Ojeda-Granados, C.; Sepulveda-Villegas, M.; Panduro, A. Association of a novel TAS2R38 haplotype with alcohol intake among Mexican-Mestizo population. Ann. Hepatol. 2015, 14, 729–734. [Google Scholar] [CrossRef]
- Wang, J.C.; Hinrichs, A.L.; Bertelsen, S.; Stock, H.; Budde, J.P.; Dick, D.M.; Bucholz, K.K.; Rice, J.; Saccone, N.; Edenberg, H.J.; et al. Functional variants in TAS2R38 and TAS2R16 influence alcohol consumption in high-risk families of African-American origin. Alcohol. Clin. Exp. Res. 2007, 31, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Liu, X.; Wohland, T.; Rohde, K.; Gast, M.T.; Stumvoll, M.; Kovacs, P.; Tonjes, A.; Bottcher, Y. TAS2R38 and its influence on smoking behavior and glucose homeostasis in the German Sorbs. PLoS ONE 2013, 8, e80512. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Lee, J.; Yang, S.; Kim, J. Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite 2017, 113, 178–186. [Google Scholar] [CrossRef]
- Beckett, E.; Duesing, K.; Boyd, L.; Yates, Z.; Veysey, M.; Lucock, M. A potential sex dimorphism in the relationship between bitter taste and alcohol consumption. Food Funct. 2017, 8, 1116–1123. [Google Scholar] [CrossRef]
- Fu, D.; Riordan, S.; Kieran, S.; Andrews, R.A.; Ring, H.Z.; Ring, B.Z. Complex relationship between TAS2 receptor variations, bitterness perception, and alcohol consumption observed in a population of wine consumers. Food Funct. 2019, 10, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Dotson, C.D.; Wallace, M.R.; Bartoshuk, L.M.; Logan, H.L. Variation in the gene TAS2R13 is associated with differences in alcohol consumption in patients with head and neck cancer. Chem. Senses 2012, 37, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Genetic variation in the TAS2R38 bitter taste receptor and gastric cancer risk in Koreans. Sci. Rep. 2016, 6, 26904. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Variations in the bitterness perception-related genes TAS2R38 and CA6 modify the risk for colorectal cancer in Koreans. Oncotarget 2017, 8, 21253–21265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.-H. Variation in the TAS2R38 bitterness receptor gene was associated with food consumption and obesity risk in Koreans. Nutrients 2019, 11, 1973. [Google Scholar] [CrossRef] [Green Version]
- Timpson, N.J.; Christensen, M.; Lawlor, D.A.; Gaunt, T.R.; Day, I.N.; Ebrahim, S.; Smith, G.D. TAS2R38 (phenylthiocarbamide) haplotypes, coronary heart disease traits, and eating behavior in the British Women’s Heart and Health Study. Am. J. Clin. Nutr. 2005, 81, 1005–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schembre, S.M.; Cheng, I.; Wilkens, L.R.; Albright, C.L.; Marchandle, L. Variations in bitter-taste receptor genes, dietary intake, and colorectal adenoma risk. Nutr. Cancer 2013, 65, 982–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, V.B.; Davidson, A.C.; Kidd, J.R.; Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Reed, D.R.; Snyder, D.J.; Bartoshuk, L.M. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol. Clin. Exp. Res. 2004, 28, 1629–1637. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.E.; Wallace, M.R.; Knopik, V.S.; Herbstman, D.M.; Bartoshuk, L.M.; Duffy, V.B. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem. Senses 2011, 36, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinrichs, A.L.; Wang, J.C.; Bufe, B.; Kwon, J.M.; Budde, J.; Allen, R.; Bertelsen, S.; Evans, W.; Dick, D.; Rice, J.; et al. Functional variant in a bitter-taste receptor (hTAS2R16) influences risk of alcohol dependence. Am. J. Hum. Genet. 2006, 78, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, J.-S.; Hwang, L.-D.; Zhong, V.W.; An, J.; Gharahkhani, P.; Breslin, P.A.; Wright, M.J.; Lawlor, D.A.; Whitfield, J.; MacGregor, S. Understanding the role of bitter taste perception in coffee, tea and alcohol consumption through Mendelian randomization. Sci. Rep. 2018, 8, 16414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurshed, A.A.M.; Ádány, R.; Diószegi, J. The impact of taste preference-related gene polymorphisms on alcohol consumption behavior: A systematic review. Int. J. Mol. Sci. 2022, 23, 15989. [Google Scholar] [CrossRef]
- Tóth, R.; Pocsai, Z.; Fiatal, S.; Széles, G.; Kardos, L.; Petrovski, B.; McKee, M.; Ádány, R. ADH1B*2 allele is protective against alcoholism but not chronic liver disease in the Hungarian population. Addiction 2010, 105, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Tóth, R.; Fiatal, S.; Petrovski, B.; McKee, M.; Ádány, R. Combined effect of ADH1B RS1229984, RS2066702 and ADH1C RS1693482/ RS698 alleles on alcoholism and chronic liver diseases. Dis. Markers 2011, 31, 267–277. [Google Scholar] [CrossRef]
- Diószegi, J.; Fiatal, S.; Tóth, R.; Moravcsik-Kornyicki, Á.; Kósa, Z.; Sándor, J.; McKee, M.; Ádány, R. Distribution characteristics and combined effect of polymorphisms affecting alcohol consumption behaviour in the Hungarian General and Roma populations. Alcohol Alcohol. 2017, 52, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Hubáček, J.A.; Šedová, L.; Olišarová, V.; Adámková, V.; Adámek, V.; Tóthová, V. Distribution of ADH1B genotypes predisposed to enhanced alcohol consumption in the Czech Roma/Gypsy population. Cent. Eur. J. Public Health. 2018, 26, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Kurshed, A.A.M.; Vincze, F.; Pikó, P.; Kósa, Z.; Sándor, J.; Ádány, R.; Diószegi, J. Alcohol consumption patterns of the Hungarian general and Roma populations. Front. Public Health 2022, 10, 1003129. [Google Scholar] [CrossRef]
- Ádány, R.; Pikó, P.; Fiatal, S.; Kósa, Z.; Sándor, J.; Bíró, É.; Kósa, K.; Paragh, G.; Bácsné Bába, É.; Veres-Balajti, I.; et al. Prevalence of insulin resistance in the Hungarian general and Roma populations as defined by using data generated in a complex health (interview and examination) survey. Int. J. Environ. Res. Public Health 2020, 17, 4833. [Google Scholar] [CrossRef]
- Széles, G.; Vokó, Z.; Jenei, T.; Kardos, L.; Pocsai, Z.; Bajtay, A.; Papp, E.; Pásti, G.; Kósa, Z.; Molnár, I. A preliminary evaluation of a health monitoring programme in Hungary. Eur. J. Public Health 2005, 15, 26–32. [Google Scholar] [CrossRef]
- Szigethy, E.; Széles, G.; Horvath, A.; Hidvegi, T.; Jermendy, G.; Paragh, G.; Blaskó, G.; Adany, R.; Voko, Z. Epidemiology of the metabolic syndrome in Hungary. Public Health 2012, 126, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kósa, K.; Daragó, L.; Ádány, R. Environmental survey of segregated habitats of Roma in Hungary: A way to be empowering and reliable in minority research. Eur. J. Public Health 2011, 21, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Fushan, A.A.; Simons, C.T.; Slack, J.P.; Manichaikul, A.; Drayna, D. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr. Biol. 2009, 19, 1288–1293. [Google Scholar] [CrossRef] [Green Version]
- Colares-Bento, F.C.; Souza, V.C.; Toledo, J.O.; Moraes, C.F.; Alho, C.S.; Lima, R.M.; Cordova, C.; Nobrega, O.T. Implication of the G145C polymorphism (rs713598) of the TAS2r38 gene on food consumption by Brazilian older women. Arch. Gerontol. Geriatr. 2012, 54, e13–e18. [Google Scholar] [CrossRef] [PubMed]
- Lucock, M.; Xiaowei, N.; Boyd, L.; Skinner, V.; Wai, R.; Tang, S.; Naylor, C.; Yates, Z.; Choi, J.H.; Roach, P.; et al. TAS2R38 bitter taste genetics, dietary vitamin C, and both natural and synthetic dietary folic acid predict folate status, a key micronutrient in the pathoaetiology of adenomatous polyps. Food Funct. 2011, 2, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Bering, A.B.; Pickering, G.; Liang, P. TAS2R38 single nucleotide polymorphisms are associated with PROP—But not thermal—Tasting: A pilot study. Chem. Percept. 2014, 7, 23–30. [Google Scholar] [CrossRef]
- Wooding, S.; Gunn, H.; Ramos, P.; Thalmann, S.; Xing, C.; Meyerhof, W. Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem. Senses 2010, 35, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrai, M.; Campa, D.; Vodicka, P.; Flamini, R.; Martelli, I.; Slyskova, J.; Jiraskova, K.; Rejhova, A.; Vodenkova, S.; Canzian, F.; et al. Association between taste receptor (TAS) genes and the perception of wine characteristics. Sci. Rep. 2017, 7, 9239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.K.; Jorgenson, E.; Coon, H.; Leppert, M.; Risch, N.; Drayna, D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 2003, 299, 1221–1225. [Google Scholar] [CrossRef]
- Keller, K.L.; Olsen, A.; Cravener, T.L.; Bloom, R.; Chung, W.K.; Deng, L.; Lanzano, P.; Meyermann, K. Bitter taste phenotype and body weight predict children’s selection of sweet and savory foods at a palatable test-meal. Appetite 2014, 77, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Mennella, J.A.; Reed, D.R.; Roberts, K.M.; Mathew, P.S.; Mansfield, C.J. Age-related differences in bitter taste and efficacy of bitter blockers. PLoS ONE 2014, 9, e103107. [Google Scholar] [CrossRef] [Green Version]
- Risso, D.S.; Giuliani, C.; Antinucci, M.; Morini, G.; Garagnani, P.; Tofanelli, S.; Luiselli, D. A bio-cultural approach to the study of food choice: The contribution of taste genetics, population and culture. Appetite 2017, 114, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ooi, S.X.; Lee, P.L.; Law, H.Y.; Say, Y.H. Bitter receptor gene (TAS2R38) P49A genotypes and their associations with aversion to vegetables and sweet/fat foods in Malaysian subjects. Asia Pac. J. Clin. Nutr. 2010, 19, 491–498. [Google Scholar] [PubMed]
- Behrens, M.; Gunn, H.C.; Ramos, P.C.; Meyerhof, W.; Wooding, S.P. Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter taste perception. Chem. Senses 2013, 38, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipchock, S.V.; Reed, D.R.; Mennella, J.A. Relationship between bitter-taste receptor genotype and solid medication formulation usage among young children: A retrospective analysis. Clin. Ther. 2012, 34, 728–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, S.; Riva, A.; Nicosanti, G.; Carrai, M.; Barale, R.; Vigo, B.; Allegrini, P.; Rondanelli, M. Association of the bitter taste receptor gene TAS2R38 (polymorphism RS713598) with sensory responsiveness, food preferences, biochemical parameters and body-composition markers. A cross-sectional study in Italy. Int. J. Food Sci. Nutr. 2018, 69, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.V.; Reed, D.R.; Mennella, J.A. Individual differences among children in sucrose detection thresholds: Relationship with age, gender, and bitter taste genotype. Nurs. Res. 2016, 65, 3–12. [Google Scholar] [CrossRef]
- Timpson, N.J.; Heron, J.; Day, I.N.; Ring, S.M.; Bartoshuk, L.M.; Horwood, J.; Emmett, P.; Davey-Smith, G. Refining associations between TAS2R38 diplotypes and the 6-n-propylthiouracil (PROP) taste test: Findings from the Avon Longitudinal Study of Parents and Children. BMC Genet. 2007, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Cabras, T.; Melis, M.; Castagnola, M.; Padiglia, A.; Tepper, B.J.; Messana, I.; Barbarossa, I.T. Responsiveness to 6-n-propylthiouracil (PROP) is associated with salivary levels of two specific basic proline-rich proteins in humans. PLoS ONE 2012, 7, e30962. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.E.; Bartoshuk, L.M.; Kidd, J.R.; Duffy, V.B. Supertasting and PROP bitterness depends on more than the TAS2R38 gene. Chem. Senses 2008, 33, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Calò, C.; Padiglia, A.; Zonza, A.; Corrias, L.; Contu, P.; Tepper, B.J.; Barbarossa, I.T. Polymorphisms in TAS2R38 and the taste bud trophic factor, gustin gene co-operate in modulating PROP taste phenotype. Physiol. Behav. 2011, 104, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Negri, R.; Di Feola, M.; Di Domenico, S.; Scala, M.G.; Artesi, G.; Valente, S.; Smarrazzo, A.; Turco, F.; Morini, G.; Greco, L. Taste perception and food choices. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melis, M.; Atzori, E.; Cabras, S.; Zonza, A.; Calo, C.; Muroni, P.; Nieddu, M.; Padiglia, A.; Sogos, V.; Tepper, B.J.; et al. The gustin (CA6) gene polymorphism, rs2274333 (A/G), as a mechanistic link between PROP tasting and fungiform taste papilla density and maintenance. PLoS ONE 2013, 8, e74151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.C.; Ranciaro, A.; Froment, A.; Hirbo, J.; Omar, S.; Bodo, J.M.; Nyambo, T.; Lema, G.; Zinshteyn, D.; Drayna, D.; et al. Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol. Biol. Evol. 2012, 29, 1141–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshaware, S.; Singhal, R. Genetic variation in bitter taste receptor gene TAS2R38, PROP taster status and their association with body mass index and food preferences in Indian population. Gene 2017, 627, 363–368. [Google Scholar] [CrossRef]
- Mennella, J.A.; Pepino, M.Y.; Reed, D.R. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 2005, 115, e216–e222. [Google Scholar] [CrossRef] [Green Version]
- Melis, M.; Sollai, G.; Muroni, P.; Crnjar, R.; Barbarossa, I.T. Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting. Nutrients 2015, 7, 2068–2084. [Google Scholar] [CrossRef] [Green Version]
- Duffy, V.B. Associations between oral sensation, dietary behaviors and risk of cardiovascular disease (CVD). Appetite 2004, 43, 5–9. [Google Scholar] [CrossRef]
- Garneau, N.L.; Nuessle, T.M.; Sloan, M.M.; Santorico, S.A.; Coughlin, B.C.; Hayes, J.E. Crowdsourcing taste research: Genetic and phenotypic predictors of bitter taste perception as a model. Front. Integr. Neurosci. 2014, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Robino, A.; Mezzavilla, M.; Pirastu, N.; Dognini, M.; Tepper, B.J.; Gasparini, P. A population-based approach to study the impact of PROP perception on food liking in populations along the silk road. PLoS ONE 2014, 9, e91716. [Google Scholar] [CrossRef]
- Sandell, M.A.; Breslin, P.A.S. Variability in a taste-receptor gene determines whether we taste toxins in food. Curr. Biol. 2006, 16, R792–R794. [Google Scholar] [CrossRef] [Green Version]
- Nolden, A.A.; McGeary, J.E.; Hayes, J.E. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes. Physiol. Behav. 2016, 156, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Bella, L.; Methven, L.; Wagstaff, C. The influence of phytochemical composition and resulting sensory attributes on preference for salad rocket (Eruca sativa) accessions by consumers of varying TAS2R38 diplotype. Food Chem. 2017, 222, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Suomela, J.P.; Vaarno, J.; Sandell, M.; Lehtonen, H.M.; Tahvonen, R.; Viikari, J.; Kallio, H. Children’s hedonic response to berry products: Effect of chemical composition of berries and hTAS2R38 genotype on liking. Food Chem. 2012, 135, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Sandell, M.; Hoppu, U.; Mikkilä, V.; Mononen, N.; Kähönen, M.; Männistö, S.; Rönnemaa, T.; Viikari, J.; Lehtimäki, T.; Raitakari, O.T. Genetic variation in the hTAS2R38 taste receptor and food consumption among Finnish adults. Genes Nutr. 2014, 9, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knaapila, A.; Hwang, L.D.; Lysenko, A.; Duke, F.F.; Fesi, B.; Khoshnevisan, A.; James, R.S.; Wysocki, C.J.; Rhyu, M.; Tordoff, M.G.; et al. Genetic analysis of chemosensory traits in human twins. Chem. Senses 2012, 37, 869–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J.E.; Feeney, E.L.; Nolden, A.A.; McGeary, J.E. Quinine bitterness and grapefruit liking associate with allelic variants in TAS2R31. Chem. Senses 2015, 40, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.R.; Zhu, G.; Breslin, P.A.; Duke, F.F.; Henders, A.K.; Campbell, M.J.; Montgomery, G.W.; Medland, S.E.; Martin, N.G.; Wright, M.J. The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Hum. Mol. Genet. 2010, 19, 4278–4285. [Google Scholar] [CrossRef] [Green Version]
- Roudnitzky, N.; Behrens, M.; Engel, A.; Kohl, S.; Thalmann, S.; Hübner, S.; Lossow, K.; Wooding, S.P.W.M. Receptor polymorphism and genomic structure interact to shape bitter taste perception. PLoS Genet. 2015, 11, e1005530. [Google Scholar] [CrossRef] [Green Version]
- Padiglia, A.; Zonza, A.; Atzori, E.; Chillotti, C.; Calo, C.; Tepper, B.J.; Barbarossa, I.T. Sensitivity to 6-n-propylthiouracil is associated with gustin (carbonic anhydrase VI) gene polymorphism, salivary zinc, and body mass index in humans. Am. J. Clin. Nutr. 2010, 92, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX Platform. Curr. Protoc. Hum. Genet. 2009, 2.12 (Suppl. 60), 2.12.1–2.12.18. [Google Scholar] [CrossRef] [PubMed]
- Cleves, M. Exploratory analysis of single nucleotide polymorphisms (SNP) for quantitative traits. Stata J. 2005, 5, 141–153. [Google Scholar] [CrossRef]
- Cleves, M.A. Hardy-Weinberg equilibrium eests and allele frequency estimation. STATA Technical. Bulletin. 1999, 48, 34–37. [Google Scholar]
- Moe, J.S.; Bolstad, I.; Mørland, J.G.; Bramness, J.G. GABAA subunit single nucleotide polymorphisms show sex-specific association to alcohol consumption and mental distress in a Norwegian population-based sample. Psychiatry Res. 2022, 307, 114257. [Google Scholar] [CrossRef] [PubMed]
- Bufe, B.; Breslin, P.A.; Kuhn, C.; Reed, D.R.; Tharp, C.D.; Slack, J.P.; Kim, U.-K.; Drayna, D.; Meyerhof, W. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 2005, 15, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.-K.; Drayna, D. Genetics of individual differences in bitter taste perception: Lessons from the PTC gene. Clin. Genet. 2005, 67, 275–280. [Google Scholar] [CrossRef]
- Pickering, G.J.; Hayes, J.E. Influence of biological, experiential and psychological factors in wine preference segmentation. Aust. J. Grape Wine Res. 2017, 23, 154–161. [Google Scholar] [CrossRef]
- Hayes, J.E.; Pickering, G.J. Wine expertise predictstaste phenotype. Am. J. Enol. Vitic. 2012, 63, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.C.; Xiao, Q.Y.; Fang, X.C.; Li, X.Q.; Fei, G.J. Ethnic discrepancies in irritable bowel syndrome-related genetic studies. World J. Gastroenterol. 2020, 26, 2049–2063. [Google Scholar] [CrossRef]
- Harishankar, M.; Selvaraj, P.; Bethunaickan, R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front. Med. 2018, 5, 213. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Han, X.K.; Liu, F.C.; Huang, J.F. Ethnic differences in the association between angiotensin-converting enzyme gene insertion/deletion polymorphism and peripheral vascular disease: A meta-analysis. Chronic Dis. Transl. Med. 2017, 3, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, L.; Xiao, Y.; Peng, Y.; Yang, C.; Wang, Z. Ethnic-specific meta-analyses of association between the OPRM1 A118G polymorphism and alcohol dependence among Asians and caucasians. Drug Alcohol Depend. 2012, 123, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xie, X.; Shi, X.; Li, S. Associations of common IL-4 gene polymorphisms with cancer risk: A meta-analysis. Mol. Med. Rep. 2017, 16, 1927–1945. [Google Scholar] [CrossRef] [Green Version]
- Castaño-Rodríguez, N.; Kaakoush, N.O.; Goh, K.L.; Fock, K.M.; Mitchell, H.M. The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: A case-control study and meta-analysis. PLoS ONE 2013, 8, e60327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garte, S. The role of ethnicity in cancer susceptibility gene polymorphisms: The example of CYP1A1. Carcinogenesis 1998, 19, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Su, L.; Ring, B.Z. Ethnic background and genetic variation in the evaluation of cancer risk: A systematic review. PLoS ONE 2014, 9, e29590. [Google Scholar] [CrossRef]
- Swinney, R.M.; Beuten, J.; Collier, A.B.r.; Chen, T.T.-L.; Winick, N.J.; Pollock, B.H.; Tomlinson, G.E. Polymorphisms in CYP1A1 and ethnic-specific susceptibility to acute lymphoblastic leukemia in children. Cancer Epidemiol. Biomark. Prev. 2011, 207, 1537–1542. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, I.; Moss, A.J.; Ryan, D.; McNitt, S.; Eberly, S.W.; Zareba, W. Polymorphism in the angiotensinogen gene, hypertension, and ethnic differences in the risk of recurrent coronary events. Hypertension 2006, 48, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Radha, V.; Vimaleswaran, K.S.; Babu, H.N.; Abate, N.; Chandalia, M.; Satija, P.; Grundy, S.M.; Ghosh, S.; Majumder, P.P.; Deepa, R.; et al. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity. Diabetes Care 2006, 29, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Burgess, B.; Melis, M.; Scoular, K.; Driver, M.; Schaich, K.M.; Keller, K.L.; Tomassini Barbarossa, I.; Tepper, B.J. Effects of CD36 Genotype on oral perception of oleic acid supplemented safflower oil emulsions in two ethnic groups: A Preliminary study. J. Food Sci. 2018, 83, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Henkin, R.I.; Lippoldt, R.; Bilstad, J.; Edelhoch, H. A zinc protein isolated from human parotid saliva. Proc. Natl. Acad. Sci. USA 1975, 72, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piras, M.; Tandler, B.; Barbarossa, I.T.; Piludu, M. Immunogold labeling of carbonic anhydrase isozyme (CA-VI) in secretory granules of human parotid glands. Acta Histochem. 2011, 114, 406–408. [Google Scholar] [CrossRef]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI deficiency. Am. J. Med. Sci. 1999, 318, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, I.T.; Melis, M.; Mattes, M.Z.; Calo, C.; Muroni, P.; Crnjar, R.; Tepper, B.J. The gustin (CA6) gene polymorphism, rs2274333 (A/G), is associated with fungiform papilla density, whereas PROP bitterness is mostly due to TAS2R38 in an ethnically-mixed population. Physiol. Behav. 2015, 138, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.L.; McGeary, J.E.; Knopik, V.S.; Hayes, J.E. Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31. Chem. Senses 2013, 38, 379–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmanov, A.A.; Kiefer, S.W.; Molina, J.C.; Tordoff, M.G.; Duffy, V.B.; Bartoshuk, L.M.; Mennella, J.A. Chemosensory factors influencing alcohol perception, preferences, and consumption. Alcohol. Clin. Exp. Res. 2003, 27, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xia, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. [Google Scholar] [CrossRef]
- Gilligan, C.; Anderson, K.G.; Ladd, B.O.; Yong, Y.M.; David, M. Inaccuracies in survey reporting of alcohol consumption. BMC Public Health 2019, 19, 1639. [Google Scholar] [CrossRef] [Green Version]
- Hoonpongsimanont, W.; Ghanem, G.; Chen, Y.; Sahota, P.K.; Carroll, C.; Barrios, C.; Lotfipour, S. Underreporting of alcohol use in trauma patients: A retrospective analysis. Subst. Abus. 2021, 42, 192–196. [Google Scholar] [CrossRef]
- Reinert, D.F.; Allen, J.P. The alcohol use disorders identification test: An update of research findings. Alcohol. Clin. Exp. Res. 2007, 31, 185–199. [Google Scholar] [CrossRef]
- Petek, D.; Pavlic, D.R.; Svab, I.; Lolic, D. Attitudes of Roma toward smoking: Qualitative study in Slovenia. Croat. Med. 2006, 47, 344–347. [Google Scholar]
- Niksic, D.; Kurspahic-Mujcic, A. The presene of health-risk behaviour in Roma family. Bosn. J. Basic Med. Sci. 2007, 7, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Zelko, E.; Švab, I.; Rotar-Pavlič, D. Quality of life and patient satisfaction with family practice care in a Roma population with chronic conditions in northeast Slovenia. Zdr. Varst 2015, 54, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Small, N.; Bryant, M.; Yang, T.; Cronin de Chavez, A.; Saville, F.; Dickerson, J. Addressing obesity in Roma communities: A community readiness approach. Int. J. Hum. Rights Healthc. 2019, 12, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Sándor, J.; Kósa, Z.; Boruzs, K.; Boros, J.; Tokaji, I.; McKee, M.; Ádány, R. The decade of Roma Inclusion: Did it make a difference to health and use of health care services? Int. J. Public Health 2017, 63, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Kósa, Z.; Moravcsik-Kornyicki, Á.; Diószegi, J.; Roberts, B.; Sándor, J.; Ádány, R. Prevalence of metabolic syndrome among Roma living in segregated colonies: A comparative health examination survey in Hungary. Eur. J. Public Health 2015, 25, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Macejova, Z.; Kristian, P.; Janicko, M.; Halanova, M.; Drazilova, S.; Antolova, D.; Marekova, M.; Pella, D.; Madarasova-Geckova, A.; Jarcuska, P.; et al. The Roma Population living in segregated settlements in Eastern Slovakia has a higher prevalence of metabolic syndrome, kidney disease, viral hepatitis B and E, and Some parasitic diseases compared to the majority population. Int. J. Environ. Res. Public Health 2020, 17, 3112. [Google Scholar] [CrossRef] [PubMed]
- Perneger, T.V. What’s wrong with Bonferroni adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP | Association | No Association | Relation to Taste Phenotypes |
---|---|---|---|---|
TAS1R3 | rs307355 | Soju intake and heavy drinking (≥30 g/day; CT carriers more likely to be heavy drinkers) [43]. | Wine, spirit, beer consumption [43]. | Taste sensitivity to sucrose (reduced sensitivity associated with T alleles) [66]. |
TAS2R38 | rs713598 | Daily number of standard drinks (P allele carriers: fewer standard drinks, also from spirits and mixed drinks) [44]. Alcohol consumption frequency (tasters: higher frequency) [45]. Decreased alcohol consumption (C allele; first question of AUDIT [46]. | Beer and wine consumption [44]. Second and third items of the AUDIT questionnaire [46]. Weekly alcohol consumption [42]. | PTC, PROP, thioamide and salicin threshold, taster status, bitterness; preference for bitter vegetables (lower preference, threshold for tasters) [67,68,69,70,71,72,73,74,75,76,77]. Preference/threshold of sucrose, preference, and intake of sweet tasting foods (GG lower preference) [78,79,80]. |
TAS2R38 | rs713598, rs1726866, rs10246939 | More frequent and more alcohol consumption of AVI/AVI homozygotes [52,53]. Subjects with the positive association of AVI/AVI and being alcoholic [39]. Higher frequency of AVV homozygotes among alcohol consumers and association with increased alcohol intake [40]. Taster haplotype associated with a lower mean of the largest number of drinks (ever having in 24 h) [41] and lower weekly alcohol intake for subjects with at least one PAV haplotype [42]. AVI haplotypes were less likely to be alcohol consumers [43]. | Daily alcohol consumption [47,48]. Beer and total daily alcohol consumption [43]. Alcohol drinker status [49,50]. Alcohol consumption frequency and amount [51]. | PROP phenotype, bitterness of ethanol, cruciferous vegetable preference, intake (lower preference, threshold for tasters) [68,69,70,71,75,77,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96]. Preference and intake of sweet tasting foods (PAV higher preference) [97,98]. |
TAS2R19 | rs10772420 | -- | Alcohol consumption frequency [45]. First three items of the AUDIT questionnaire [46]. Drinking frequency and heavy drinker status [55]. | Preference, intensity, detection threshold of bitter tasting compounds and preference of grape-fruit juice (The A allele was associated with more intense quinine perception) [53,99,100,101,102]. |
CA6 | rs2274333 | -- | Daily consumption of alcohol [48]. Alcohol consumption frequency [45]. | PROP (bitter) taster status, threshold (The A allele more common in supertasters) [82,84,86,103]. |
Gene | SNP | Genotypes | HG Genotype Frequency % (n) | HR Genotype Frequency % (n) | p-Value |
---|---|---|---|---|---|
CC | 81.2 (329) | 82.7 (301) | |||
TAS1R3 | rs307355 | TC | 17.8 (72) | 16.5 (60) | 0.864 |
TT | 1.0 (4) | 0.8 (3) | |||
CC | 34.1 (136) | 37.1 (134) | |||
TAS2R38 | rs713598 | GC | 43.6 (174) | 45.7 (165) | 0.203 |
GG | 22.3 (89) | 17.2 (62) | |||
AA | 19.3 (78) | 16.4 (59) | |||
TAS2R19 | rs10772420 | AG | 49.6 (201) | 46.8 (169) | 0.215 |
GG | 31.1 (126) | 36.8 (133) | |||
AA | 50.0 (199) | 50.3 (182) | |||
CA6 | rs2274333 | AG | 38.9 (155) | 41.1 (149) | 0.490 |
GG | 11.1 (44) | 8.6 (31) |
Gene, SNP | Phenotype | Population | Genetic Model | Reference | Genotype | Coef | p-Value | |
---|---|---|---|---|---|---|---|---|
TAS2R38 rs713598 | AUDIT2 | HG | Recessive | CC or GC | GG | −0.136 | 0.028 (0.224 *) | |
TAS2R38 rs713598 | AUDIT3 | HR | Recessive | CC or GC | GG | −0.170 | 0.049 (0.392 *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurshed, A.A.M.; Vincze, F.; Pikó, P.; Kósa, Z.; Sándor, J.; Ádány, R.; Diószegi, J. Taste Preference-Related Genetic Polymorphisms Modify Alcohol Consumption Behavior of the Hungarian General and Roma Populations. Genes 2023, 14, 666. https://doi.org/10.3390/genes14030666
Kurshed AAM, Vincze F, Pikó P, Kósa Z, Sándor J, Ádány R, Diószegi J. Taste Preference-Related Genetic Polymorphisms Modify Alcohol Consumption Behavior of the Hungarian General and Roma Populations. Genes. 2023; 14(3):666. https://doi.org/10.3390/genes14030666
Chicago/Turabian StyleKurshed, Ali Abbas Mohammad, Ferenc Vincze, Péter Pikó, Zsigmond Kósa, János Sándor, Róza Ádány, and Judit Diószegi. 2023. "Taste Preference-Related Genetic Polymorphisms Modify Alcohol Consumption Behavior of the Hungarian General and Roma Populations" Genes 14, no. 3: 666. https://doi.org/10.3390/genes14030666