The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethical Statement
2.3. Biochemical Analyses
2.4. Genotyping
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. Available online: https://pubmed.ncbi.nlm.nih.gov/33883728/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. Available online: https://pubmed.ncbi.nlm.nih.gov/31420554/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Bentzon, J.F.; Falk, E. Pathogenesis of Stable and Acute Coronary Syndromes. In Acute Coronary Syndromes: A Companion to Braunwald’s Heart Disease; Saunders: Philadelphia, PA, USA, 2011; pp. 42–52. [Google Scholar]
- Davies, M.J. Coronary Disease: The Pathophysiology of Acute Coronary Syndromes. Heart 2000, 83, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, E.; Shah, P.K.; Fuster, V. Coronary Plaque Disruption. Circulation 1995, 92, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Molecular Mechanisms of the Acute Coronary Syndromes: The Roles of Inflammation and Immunity. In Acute Coronary Syndromes: A Companion to Braunwald’s Heart Disease; W. B. Saunders Company: Philadelphia, PA, USA, 2011; pp. 53–60. [Google Scholar]
- van der Harst, P.; Verweij, N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ. Res. 2018, 122, 433–443. Available online: https://pubmed.ncbi.nlm.nih.gov/29212778/ (accessed on 12 December 2022). [CrossRef]
- Fu, Y.; Kong, W. Cartilage Oligomeric Matrix Protein: Matricellular and Matricrine Signaling in Cardiovascular Homeostasis and Disease. Curr. Vasc. Pharmacol. 2017, 15, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W.; Koitsopoulos, P.G. Clinical genomics of the relationship between Adamts7 and coronary artery calcification and atherosclerosis. J. Trans. Genom. 2018, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Hanby, H.A.; Zheng, X.L. Biochemistry and physiological functions of ADAMTS7 metalloprotease. Adv. Biochem. 2013, 1. Available online: https://pubmed.ncbi.nlm.nih.gov/24222922/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- Riessen, R.; Fenchel, M.; Chen, H.; Axel, D.I.; Karsch, K.R.; Lawler, J. Cartilage oligomeric matrix protein (thrombospondin-5) is expressed by human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 47–54. Available online: https://pubmed.ncbi.nlm.nih.gov/11145932/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- Bauer, R.C.; Tohyama, J.; Cui, J.; Cheng, L.; Yang, J.; Zhang, X.; Ou, K.; Paschos, G.K.; Zheng, X.L.; Parmacek, M.S.; et al. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation 2015, 131, 1202–1213. Available online: https://pubmed.ncbi.nlm.nih.gov/25712206/ (accessed on 12 December 2022). [CrossRef] [PubMed] [Green Version]
- Pu, X.; Xiao, Q.; Kiechl, S.; Chan, K.; Ng, F.L.; Gor, S.; Poston, R.N.; Fang, C.; Patel, A.; Senver, E.C.; et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am. J. Hum. Genet. 2013, 92, 366–374. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591856/ (accessed on 12 December 2022). [CrossRef] [PubMed] [Green Version]
- Bengtsson, E.; Hultman, K.; Dunér, P.; Asciutto, G.; Almgren, P.; Orho-Melander, M.; Melander, O.; Nilsson, J.; Hultgardh-Nilsson, A.; Goncalves, I. ADAMTS-7 is associated with a high-risk plaque phenotype in human atherosclerosis. Sci. Rep. 2017, 7, 3753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, J.; Bai, X.; Liu, B.; Liu, C.J.; Xu, Q.; Zhu, Y.; Wang, N.; Kong, W.; Wang, X. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ. Res. 2009, 13, 688–698. Available online: https://pubmed.ncbi.nlm.nih.gov/19168437/ (accessed on 12 December 2022). [CrossRef] [PubMed] [Green Version]
- Hosseini, D.K.; Ataikia, S.; Hosseini, H.K.; Han, B.; Sun, H. Association of polymorphisms in ADAMTS-7 gene with the susceptibility to coronary artery disease—A systematic review and meta-analysis. Aging 2020, 12, 20915–20923. Available online: https://pubmed.ncbi.nlm.nih.gov/33122452/ (accessed on 12 December 2022). [CrossRef]
- Du, Y.; Gao, C.; Liu, Z.; Wang, L.; Liu, B.; He, F.; Zhang, T.; Wang, Y.; Wang, X.; Xu, M.; et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2580–2588. Available online: https://pubmed.ncbi.nlm.nih.gov/22995515/ (accessed on 12 December 2022). [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, J.; Du, Y.; Huang, Y.; Li, J.; Liu, B.; Liu, C.; Zhu, Y.; Gao, Y.; Xu, Q.; et al. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with α7β1 integrin. Circ. Res. 2010, 106, 30–40. Available online: https://pubmed.ncbi.nlm.nih.gov/20019333/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. Available online: https://pubmed.ncbi.nlm.nih.gov/29222373/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. Available online: https://pubmed.ncbi.nlm.nih.gov/30153967/ (accessed on 12 December 2022).
- Sakakura, K.; Nakano, M.; Otsuka, F.; Ladich, E.; Kolodgie, F.D.; Virmani, R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013, 22, 399–411. Available online: https://pubmed.ncbi.nlm.nih.gov/23541627/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- Buckler, A.J.; Gotto, A.M., Jr.; Rajeev, A.; Nicolaou, A.; Sakamoto, A.; St Pierre, S.; Phillips, M.; Virmani, R.; Villines, T.C. Atherosclerosis risk classification with computed tomography angiography: A radiologic-pathologic validation study. Atherosclerosis 2023, 366, 42–48. Available online: https://pubmed.ncbi.nlm.nih.gov/36481054/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- U.S. National Library of Medicine. National Center for Biotechnology Information. Adamts7 Adam Metallopeptidase with Thrombospondin Type 1 Motif 7 [Homo Sapiens (Human)]–Gene–NCBI [Internet]. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=11173 (accessed on 4 December 2022).
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 6, 333–338. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119261/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Liu, C.J.; Kong, W.; Ilalov, K.; Yu, S.; Xu, K.; Prazak, L.; Fajardo, M.; Sehgal, B.; Di Cesare, P.E. ADAMTS-7: A metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J. 2006, 20, 988–990. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483927/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Nagase, H.; Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther. 2003, 5, 94–103. Available online: https://pubmed.ncbi.nlm.nih.gov/12718749/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2012, 40, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.; Bai, X.; Zhao, Y.; Tian, Q.; Liu, B.; Lin, E.A.; Chen, Y.; Lee, B.; Appleton, C.T.; Beier, F.; et al. ADAMTS-7 forms a positive feedback loop with TNF-alpha in the pathogenesis of osteoarthritis. Ann. Rheum. Dis. 2014, 73, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Galis, Z.S.; Sukhova, G.K.; Lark, M.W.; Libby, P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 1994, 94, 2493–2503. [Google Scholar] [CrossRef] [Green Version]
- Hurskainen, T.L.; Hirohata, S.; Seldin, M.F.; Apte, S.S. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J. Biol. Chem. 1999, 274, 25555–25563. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.X.; Yu, C.A.; Lu, J.H.; Gao, H.M.; Li, G.; Kong, W.; Zheng, J. ADAMTS-7 expression increases in the early stage of angiotensin II-induced renal injury in elderly mice. Kidney Blood Press. Res. 2013, 38, 121–131. [Google Scholar] [CrossRef]
- López-Mejías, R.; Genre, F.; García-Bermúdez, M.; Ubilla, B.; Castañeda, S.; Llorca, J.; González-Juanatey, C.; Corrales, A.; Miranda-Filloy, J.A.; Pina, T.; et al. Lack of association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and carotid intima-media thickness, carotid plaques, and cardiovascular disease in patients with rheumatoid arthritis. Mediators. Inflamm. 2014, 2014, 756279. Available online: https://pubmed.ncbi.nlm.nih.gov/24795506/ (accessed on 12 December 2022). [CrossRef] [Green Version]
- Reilly, M.P.; Li, M.; He, J.; Ferguson, J.F.; Stylianou, I.M.; Mehta, N.M. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet 2011, 377, 383–392. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(10)61996-4/fulltext (accessed on 12 December 2022). [CrossRef] [PubMed] [Green Version]
- Chan, K.; Pu, X.; Sandesara, P.; Poston, R.N.; Simpson, I.A.; Quyyumi, A.A.; Ye, S.; Patel, R.S. Genetic Variation at the ADAMTS7 Locus is Associated With Reduced Severity of Coronary Artery Disease. J. Am. Heart Assoc. 2017, 6, e006928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Mao, C.; Chen, X.; Yang, S.; Qiu, Z.; Yu, B.; Jia, Y.; Wu, C.; Wang, Y.; Wang, Y.; et al. Peptide Vaccine Against ADAMTS-7 Ameliorates Atherosclerosis and Postinjury Neointima Hyperplasia. Circulation 2022. Online ahead of print. Available online: https://pubmed.ncbi.nlm.nih.gov/36562301/ (accessed on 12 December 2022). [CrossRef] [PubMed]
- Vandenbroucke, J.P. Observational research, randomised trials, and two views of medical science. PLoS Med. 2008, 5, e67. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265762/ (accessed on 12 December 2022). [CrossRef] [Green Version]
Cases (N = 463) | Control Subjects (N = 1127) | ||
---|---|---|---|
Age (years) | 66.45 ± 9.95 | 64.37 ± 9.21 | <0.001 |
Systolic blood pressure (mm Hg) | 147.97 ± 20.39 | 148.23 ± 20.85 | 0.829 |
Diastolic blood pressure (mm Hg) | 81.68 ± 10.87 | 84.32 ± 10.38 | <0.001 |
Gender | <0.001 | ||
Male | 288 (62.2%) | 573 (50.8%) | |
Female | 175 (37.8%) | 554 (49.2%) | |
Smoking (%) | <0.001 | ||
Never | 367 (79.3%) | 1010 (89.6%) | |
Former smoker | 23 (5.0%) | 10 (0.9%) | |
Active smoker | 73 (15.8%) | 107 (9.5%) | |
Physical activity (3–4-times per week) | 349 (75.4%) | 759 (67.3%) | 0.002 |
Body mass index (kg/m2) | 29.56 ± 4.14 | 29.86 ± 4.80 | 0.245 |
Waist circumference (cm) | 103.10 ± 12.23 | 107.78 ±12.48 | <0.001 |
Fasting glucose (mmol/L) | 8.84 ± 2.89 | 8.60 ± 2.64 | 0.173 |
HbA1c (%) | 8.04 ± 1.32 | 5.95 ± 1.16 | <0.001 |
hs CRP (mg/L) | 2.30 (1.22–3.70) | 1.90 (1.10–3.00) | <0.001 |
T2DM duration (years) | 11.00 (6.00–20.00) | 14.00 (10.00–20.00) | <0.001 |
Total cholesterol (mmol/L) | 4.90 (4.00–5.90) | 4.70 (4.00–5.60) | <0.001 |
HDL-cholesterol (mmol/L) | 1.10 (0.90–1.30) | 1.20 (1.00–1.40) | <0.001 |
LDL-cholesterol (mmol/L) | 2.70 (2.10–3.70) | 2.60 (2.10–3.30) | 0.014 |
Triglycerides (mmol/L) | 1.70 (1.20–2.60) | 1.80 (1.20–2.50) | 0.947 |
History of cerebrovascular stroke | 59 (12.7%) | 77 (6.8%) | <0.001 |
CABG history | 123 (26.6%) | 0 (0.0%) | <0.001 |
Stenting of coronary arteries | 163 (35.2%) | 0 (0.0%) | <0.001 |
Statin use | 389 (84.0%) | 763 (67.7%) | <0.001 |
Use of drugs affecting RAAS system | 257 (55.5%) | 592 (52.5%) | 0.279 |
Cases (%) (N = 463) | Controls (%) (N = 1127) | p Value * | OR | p Value ** | |
---|---|---|---|---|---|
Genotypes_rs3825807 | 0.015 | ||||
AA genotype | 154 (33.3%) | 299 (26.5%) | 1.55 | 0.007 | |
AG genotype | 231 (49.9%) | 593 (52.6%) | 1.17 | 0.29 | |
GG genotype | 78 (16.8%) | 235 (20.9%) | Ref. | ||
Alleles | 0.006 | ||||
A allele | 539 (58.2%) | 1191 (52.8%) | 1.24 | 0.006 | |
G allele | 387 (41.8%) | 1063 (47.2%) | Ref. | ||
Hardy–Weinberg equilibrium (p value) | 0.5836 | 0.06124 | |||
Dominant | 0.068 | ||||
AA + AG | 385 (83.2%) | 892 (79.1%) | 1.30 | 0.069 | |
GG | 78 (16.8%) | 235 (20.9%) | Ref. | ||
Recessive | 0.007 | ||||
AA | 154 (33.3%) | 299 (26.5%) | 1.38 | 0.007 | |
AG + GG | 309 (66.7%) | 828 (73.5%) | Ref. |
Model | Adjusted OR (95% CI) | p-Value |
---|---|---|
co-dominant | ||
AA versus GG * | 2.153 (1.215–3.968) | 0.011 |
AG versus GG * | 1.437 (0.836–2.583) | 0.20 |
Dominant | ||
[AA + AG] versus GG * | 1.673 (1.003–2.938) | 0.059 |
Recessive | ||
AA versus [AG + GG] * | 1.647 (1.120–2.407) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovič, D.; Nussdorfer, P.; Petrovič, D. The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Genes 2023, 14, 508. https://doi.org/10.3390/genes14020508
Petrovič D, Nussdorfer P, Petrovič D. The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Genes. 2023; 14(2):508. https://doi.org/10.3390/genes14020508
Chicago/Turabian StylePetrovič, David, Petra Nussdorfer, and Danijel Petrovič. 2023. "The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus" Genes 14, no. 2: 508. https://doi.org/10.3390/genes14020508
APA StylePetrovič, D., Nussdorfer, P., & Petrovič, D. (2023). The rs3825807 Polymorphism of ADAMTS7 as a Potential Genetic Marker for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Genes, 14(2), 508. https://doi.org/10.3390/genes14020508