Advancement in Human Face Prediction Using DNA
Abstract
:1. Introduction
2. DNA Phenotyping
Inference of Face Features
3. Facial Screening and Scanning Tools
3.1. Facial Screening Using 2D Approach
3.2. 3D Face-Phenotyping Techniques
3.2.1. Advanced Phone Application in 3D Scanning
3.2.2. Laser Triangulation-Based 3D Scanners
3.2.3. Structured Light 3D Scanners
3.2.4. Stereophotogrammetry 3D Scanners
3.2.5. Selecting the Right Type of Scanners
4. Face Landmarks, Algorithms, and Analysis Tools
4.1. Face Landmarks
4.2. Manual Landmarking
4.3. Semi-Automated Landmarking
4.4. Automated Landmarking
4.5. Estimation of 3D Face Landmarks Using Mobile Devices
4.6. Face Masking and Quasi-Landmarks
5. Current advances in Approaching Genetically Based 3D Facial Shape Analysis
5.1. DNA to Face Approach
5.2. Face to DNA Approach
5.3. Statistical Approaches
6. Challenges in Forensic DNA Phenotyping
6.1. Accuracy
6.2. Ethical Issues
6.3. Bias
6.4. Legal Issues
6.5. Facial Cosmetic Changes
6.6. Evaluation and Validation
7. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatia, S.; Wright, G.; Leighton, B. A proposed multivariate model for prediction of facial growth. Am. J. Orthod. 1979, 75, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Richmond, S.; Howe, L.J.; Lewis, S.; Stergiakouli, E.; Zhurov, A. Facial Genetics: A Brief Overview. Front. Genet. 2018, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, M. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Sci. Int. Genet. 2015, 18, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Margiotta, G.; Iacovissi, E.; Tommolini, F.; Carnevali, E. Forensic DNA Phenotyping: A New Powerful Tool in Forensic Medicine. In Forensic Medicine: Fundamentals, Clinical Perspectives and Challenges; Nova Science Pub. Inc.: Hauppauge, NY, USA, 2016; pp. 1–23. [Google Scholar]
- Schneider, P.M.; Prainsack, B.; Kayser, M. The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Dtsch. Arztebl. Int. 2019, 51–52, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C. Probable Race of a Stain Donor. In Proceedings of the Seventh International Symposium on Human Identification, Madison, WI, USA, 16–18 September 1997; pp. 48–52. [Google Scholar]
- Frudakis, T.N. Molecular Photofitting: Predicting Ancestry and Phenotype from DNA; Academic Press Publishers: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Digilio, M.; Marino, B.; Capolino, R.; Dallapiccola, B. Clinical manifestations of Deletion 22q11.2 syndrome (DiGeorge/Velo-Cardio-Facial syndrome). Images Paediatr. Cardiol. 2005, 7, 23–34. [Google Scholar]
- Sharma, S. Fetal Alcohol Spectrum Disorders: Concepts, Mechanisms, and Cure; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2017. [Google Scholar]
- Cornejo, J.Y.R.; Pedrini, H.; Lima, A.M.; Nunes, F.D.L.D.S. Down syndrome detection based on facial features using a geometric descriptor. J. Med. Imaging 2017, 4, 044008. [Google Scholar] [CrossRef]
- MacLean, C.; Lamparello, A. Forensic DNA Phenotyping in Criminal Investigations and Criminal Courts: Assessing and Mitigating the Dilemmas Inherent in the Science. Recent Adv. DNA Gene Seq. 2015, 8, 104–112. [Google Scholar] [CrossRef]
- Vidaki, A.; Ballard, D.; Aliferi, A.; Miller, T.H.; Barron, L.P.; Court, D.S. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci. Int. Genet. 2017, 28, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Miranda, G.E.; Wilkinson, C.; Roughley, M.; Beaini, T.L.; Melani, R.F.H. Assessment of accuracy and recognition of three-dimensional computerized forensic craniofacial reconstruction. PLoS ONE 2018, 13, e0196770. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.R.; Jung, S.-E.; Lee, E.H.; Shin, K.-J.; Yang, W.I.; Lee, H.Y. DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. Forensic Sci. Int. Genet. 2017, 29, 118–125. [Google Scholar] [CrossRef]
- Parson, W. Age Estimation with DNA: From Forensic DNA Fingerprinting to Forensic (Epi)Genomics: A Mini-Review. Gerontology 2018, 64, 326–332. [Google Scholar] [CrossRef]
- Thong, Z.; Chan, X.L.S.; Tan, J.Y.Y.; Loo, E.S.; Syn, C.K.C. Evaluation of DNA methylation-based age prediction on blood. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e249–e251. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-E.; Lim, S.M.; Hong, S.R.; Lee, E.H.; Shin, K.-J.; Lee, H.Y. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci. Int. Genet. 2018, 38, 1–8. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.-R.; Duncan, L.; Perry, J.R.B.; Patterson, N.; Robinson, E.B.; et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef] [Green Version]
- Okbay, A.; Beauchamp, J.P.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.-B.; Emilsson, V.; Meddens, S.F.W.; et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 2016, 533, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Pakstis, A.J.; Speed, W.C.; Soundararajan, U.; Rajeevan, H.; Kidd, J.R.; Li, H.; Kidd, K.K. Population relationships based on 170 ancestry SNPs from the combined Kidd and Seldin panels. Sci. Rep. 2019, 9, 18874. [Google Scholar] [CrossRef] [Green Version]
- Richmond, S.; Toma, A.M.; Zhurov, A.I. New perspectives on craniofacial growth. Orthod. Fr. 2009, 80, 359–369. [Google Scholar] [CrossRef]
- Richmond, S.; Wilson-Nagrani, C.; Zhurov, A.; Farnell, D.; Galloway, J.; Ali, A.S.M.; Pirttiniemi, P.; Katic, V. Factors Influencing Facial Shape. In Evidence-Based Orthodontics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 69–81. [Google Scholar] [CrossRef]
- Dunn, R.R.; Spiros, M.C.; Kamnikar, K.R.; Plemons, A.M.; Hefner, J.T. Ancestry estimation in forensic anthropology: A review. WIREs Forensic Sci. 2020, 2, e1369. [Google Scholar] [CrossRef]
- Zbieć-Piekarska, R.; Spólnicka, M.; Kupiec, T.; Parys-Proszek, A.; Makowska, Ż.; Pałeczka, A.; Kucharczyk, K.; Płoski, R.; Branicki, W. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 2015, 17, 173–179. [Google Scholar] [CrossRef]
- Sun, Q.; Jiang, L.; Zhang, G.; Liu, J.; Zhao, L.; Zhao, W.; Li, C. Twenty-seven continental ancestry-informative SNP analysis of bone remains to resolve a forensic case. Forensic Sci. Res. 2019, 4, 364–366. [Google Scholar] [CrossRef]
- Xia, X.; Chen, X.; Wu, G.; Li, F.; Wang, Y.; Chen, Y.; Chen, M.; Wang, X.; Chen, W.; Xian, B.; et al. Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nat. Metab. 2020, 2, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Furtado, M.R.; Fang, R.; Madbouly, A.; Maiers, M.; Middha, M.; Friedlaender, F.R.; Kidd, J.R. Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci. Int. Genet. 2014, 10, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AncestryDNA®. 2020. Available online: https://www.ancestry.com/dna/ (accessed on 30 September 2020).
- Roosenboom, J.; Hens, G.; Mattern, B.C.; Shriver, M.D.; Claes, P. Exploring the Underlying Genetics of Craniofacial Morphology through Various Sources of Knowledge. BioMed Res. Int. 2016, 2016, 3054578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popejoy, A.B.; Fullerton, S.M. Genomics is failing on diversity. Nature 2016, 538, 161–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, R.E.; Kuchenbaecker, K.; Walters, R.K.; Chen, C.Y.; Popejoy, A.B.; Periyasamy, S.; Lam, M.; Iyegbe, C.; Strawbridge, R.J.; Brick, L.; et al. Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell 2019, 179, 589–603. [Google Scholar] [CrossRef]
- 23andMe DNA Genetic Testing & Analysis—23andMe AU, DE, FR & EU. 2020. Available online: https://www.23andme.com/en-int/ (accessed on 30 September 2020).
- Geno DNA Ancestry Kit. National Geographic. 2020. Available online: https://helpcenter.nationalgeographic.com/s/article/Genographic-DNA-Ancestry-Project-and-Kit-Discontinuation (accessed on 1 October 2022).
- Butler, K.; Peck, J.M.; Hart, M. Schanfield, and D. Podini Molecular ‘eyewitness’: Forensic prediction of phenotype and ancestry. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e498–e499. [Google Scholar] [CrossRef]
- Jin, X.-Y.; Guo, Y.-X.; Chen, C.; Cui, W.; Liu, Y.-F.; Tai, Y.-C.; Zhu, B.-F. Ancestry Prediction Comparisons of Different AISNPs for Five Continental Populations and Population Structure Dissection of the Xinjiang Hui Group via a Self-Developed Panel. Genes 2020, 11, 505. [Google Scholar] [CrossRef]
- Budowle, B.; van Daal, A. Forensically relevant SNP classes. Biotechniques 2008, 44, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.; Salas, A.; Sánchez, J.; Fondevila, M.; Tato, A.G.; Alvarez-Dios, J.A.; Calaza, M.; de Cal, M.C.; Ballard, D.; Lareu, M.; et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci. Int. Genet. 2007, 1, 273–280. [Google Scholar] [CrossRef]
- José, A. Alvarez Dios, Antonio Gómez Tato, y María de los Ángeles Casares de Cal. Departamento de Matemática Aplicada, Classification of individuals using AIMs. Available online: http://mathgene.usc.es/index.php (accessed on 1 October 2022).
- Guo, Y.-X.; Jin, X.-Y.; Xia, Z.-Y.; Chen, C.; Cui, W.; Zhu, B.-F. A small NGS-SNP panel of ancestry inference designed to distinguish African, European, East, and South Asian populations. Electrophoresis 2020, 41, 649–656. [Google Scholar] [CrossRef]
- Lan, Q.; Fang, Y.; Mei, S.; Xie, T.; Liu, Y.; Jin, X.; Yang, G.; Zhu, B. Next generation sequencing of a set of ancestry-informative SNPs: Ancestry assignment of three continental populations and estimating ancestry composition for Mongolians. Mol. Genet. Genom. 2020, 295, 1027–1038. [Google Scholar] [CrossRef]
- Draus-Barini, J.; Walsh, S.; Pośpiech, E.; Kupiec, T.; Głąb, H.; Branicki, W.; Kayser, M. Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains. Investig. Genet. 2013, 4, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.; Liu, F.; Wollstein, A.; Kovatsi, L.; Ralf, A.; Kosiniak-Kamysz, A.; Branicki, W.; Kayser, M. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 2012, 7, 98–115. [Google Scholar] [CrossRef] [Green Version]
- Van Laan, M. The genetic witness: Forensic DNA phenotyping. J. Emerg. Forensic Sci. Res. 2017, 2, 33–52. [Google Scholar]
- Chaitanya, L.; Breslin, K.; Zuñiga, S.; Wirken, L.; Pośpiech, E.; Kukla-Bartoszek, M.; Sijen, T.; de Knijff, P.; Liu, F.; Branicki, W.; et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Sci. Int. Genet. 2018, 35, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.; Chaitanya, L.; Clarisse, L.; Wirken, L.; Draus-Barini, J.; Kovatsi, L.; Maeda, H.; Ishikawa, T.; Sijen, T.; de Knijff, P.; et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet. 2013, 9, 150–161. [Google Scholar] [CrossRef]
- King, T.E.; Fortes, G.G.; Balaresque, P.; Thomas, M.G.; Balding, D.; Delser, P.M.; Neumann, R.; Parson, W.; Knapp, M.; Walsh, S.; et al. Identification of the remains of King Richard III. Nat. Commun. 2014, 5, 5631. [Google Scholar] [CrossRef] [Green Version]
- Marano, L.A.; Andersen, J.D.; Goncalves, F.T.; Garcia, A.L.O.; Fridman, C. Evaluation of HIrisplex-S system markers for eye, skin and hair color prediction in an admixed Brazilian population. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 427–428. [Google Scholar] [CrossRef]
- Marano, L.A.; Fridman, C. DNA phenotyping: Current application in forensic science. Res. Rep. Forensic Med. Sci. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Norrgard, K.; Schultz, J. SNPs and Population Differentiation. Nature 2008, 1, 85. [Google Scholar]
- Breslin, K.; Wills, B.; Ralf, A.; Garcia, M.V.; Kukla-Bartoszek, M.; Pospiech, E.; Freire-Aradas, A.; Xavier, C.; Ingold, S.; de La Puente, M.; et al. HIrisPlex-S system for eye, hair, and skin color prediction from DNA: Massively parallel sequencing solutions for two common forensically used platforms. Forensic Sci. Int. Genet. 2019, 43, 102152. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Liu, F.; Ballantyne, K.N.; van Oven, M.; Lao, O.; Kayser, M. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci. Int. Genet. 2011, 5, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Chaitanya, L.; Walsh, S.; Andersen, J.D.; Ansell, R.; Ballantyne, K.; Ballard, D.; Banemann, R.; Bauer, C.M.; Bento, A.M.; Brisighelli, F.; et al. Collaborative EDNAP exercise on the IrisPlex system for DNA-based prediction of human eye colour. Forensic Sci. Int. Genet. 2014, 11, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purps, J.; Geppert, M.; Nagy, M.; Roewer, L. Evaluation of the IrisPlex eye colour prediction tool in a German population sample. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e202–e203. [Google Scholar] [CrossRef]
- Walsh, S.; Wollstein, A.; Liu, F.; Chakravarthy, U.; Rahu, M.; Seland, J.H.; Soubrane, G.; Tomazzoli, L.; Topouzis, F.; Vingerling, J.R.; et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci. Int. Genet. 2012, 6, 330–340. [Google Scholar] [CrossRef]
- Bulbul, O.; Zorlu, T.; Filoglu, G. Prediction of human eye colour using highly informative phenotype SNPs (PISNPs). Aust. J. Forensic Sci. 2020, 52, 27–37. [Google Scholar] [CrossRef]
- Prestes, P.R.; Mitchell, R.J.; Daniel, R.; Ballantyne, K.N.; van Oorschot, R.A.H. Evaluation of the IrisPlex system in admixed individuals. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e283–e284. [Google Scholar] [CrossRef]
- Dembinski, G.M.; Picard, C.J. Evaluation of the IrisPlex DNA-based eye color prediction assay in a United States population. Forensic Sci. Int. Genet. 2014, 9, 111–117. [Google Scholar] [CrossRef]
- Branicki, W.; Liu, F.; van Duijn, K.; Draus-Barini, J.; Pośpiech, E.; Walsh, S.; Kupiec, T.; Wojas-Pelc, A.; Kayser, M. Model-based prediction of human hair color using DNA variants. Hum. Genet. 2011, 129, 443–454. [Google Scholar] [CrossRef] [Green Version]
- De Cerqueira, C.C.S.; Hünemeier, T.; Gomez-Valdés, J.; Ramallo, V.; Volasko-Krause, C.D.; Barbosa, A.A.L.; Vargas-Pinilla, P.; Dornelles, R.C.; Longo, D.; Rothhammer, F.; et al. Implications of the admixture process in skin color molecular assessment. PLoS ONE 2014, 9, e96886. [Google Scholar] [CrossRef]
- Lima, F.D.A.; Gonçalves, F.D.T.; Fridman, C. SLC24A5 and ASIP as phenotypic predictors in Brazilian population for forensic purposes. Leg. Med. 2015, 17, 261–266. [Google Scholar] [CrossRef]
- Dario, P.; Mouriño, H.; Oliveira, A.R.; Lucas, I.; Ribeiro, T.; Porto, M.J.; Costa Santos, J.; Dias, D.; Corte Real, F. Assessment of IrisPlex-based multiplex for eye and skin color prediction with application to a Portuguese population. Int. J. Leg. Med. 2015, 129, 1191–1200. [Google Scholar] [CrossRef]
- Fracasso, N.C.d.A.; de Andrade, E.S.; Wiezel, C.E.V.; Andrade, C.C.F.; Zanão, L.R.; da Silva, M.S.; Marano, L.A.; Donadi, E.A.; Castelli, E.C.; Simões, A.L.; et al. Haplotypes from the SLC45A2 gene are associated with the presence of freckles and eye, hair and skin pigmentation in Brazil. Leg. Med. 2017, 25, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Branicki, W.; Brudnik, U.; Wojas-Pelc, A. Interactions between HERC2, OCA2 and MC1R may influence human pigmentation phenotype. Ann. Hum. Genet. 2009, 73, 160–170. [Google Scholar] [CrossRef]
- Simcoe, M.; Valdes, A.; Liu, F.; Furlotte, N.A.; Evans, D.M.; Hemani, G.; Ring, S.M.; Smith, G.D.; Duffy, D.L.; Zhu, G.; et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 2021, 7, eabd1239. [Google Scholar] [CrossRef]
- Devranoglu, D.; Tavaci, I.; Filoglu, G.; Bulbul, O. Effect of Type of Degraded DNA Samples on Human Eye Color Prediction. Pak. J. Zool. 2020, 53, 1–9. [Google Scholar] [CrossRef]
- Hart, K.L.; Kimura, S.L.; Mushailov, V.; Budimlija, Z.M.; Prinz, M.; Wurmbach, E. Improved eye- and skin-color prediction based on 8 SNPs. Croat. Med. J. 2013, 54, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Zaorska, K.; Zawierucha, P.; Nowicki, M. Prediction of skin color, tanning and freckling from DNA in Polish population: Linear regression, random forest and neural network approaches. Hum. Genet. 2019, 138, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Stokowski, R.P.; Pant, P.K.; Dadd, T.; Fereday, A.; Hinds, D.; Jarman, C.; Filsell, W.; Ginger, R.S.; Green, M.R.; van der Ouderaa, F.J.; et al. A Genomewide Association Study of Skin Pigmentation in a South Asian Population. Am. J. Hum. Genet. 2007, 81, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- Spichenok, O.; Budimlija, Z.M.; Mitchell, A.A.; Jenny, A.; Kovacevic, L.; Marjanovic, D.; Caragine, T.; Prinz, M.; Wurmbach, E. Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci. Int. Genet. 2011, 5, 472–478. [Google Scholar] [CrossRef]
- Hysi, P.G.; Valdes, A.M.; Liu, F.; Furlotte, N.A.; Evans, D.M.; Bataille, V.; Visconti, A.; Hemani, G.; McMahon, G.; Ring, S.M.; et al. Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability. Nat. Genet. 2018, 50, 652–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; van Duijn, K.; Vingerling, J.R.; Hofman, A.; Uitterlinden, A.G.; Janssens, A.C.J.; Kayser, M. Eye color and the prediction of complex phenotypes from genotypes. Curr. Biol. 2009, 19, R192–R193. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, J.; Amoudi, M.; Kassab, A.C.; Al Mufarrej, M.; Al Ghamdi, S. Eye color prediction using single nucleotide polymorphisms in Saudi population. Saudi J. Biol. Sci. 2019, 26, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Balanovska, E.; Lukianova, E.; Kagazezheva, J.; Maurer, A.; Leybova, N.; Agdzhoyan, A.; Gorin, I.; Petrushenko, V.; Zhabagin, M.; Pylev, V.; et al. Optimizing the genetic prediction of the eye and hair color for North Eurasian populations. BMC Genom. 2020, 21, 527. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; You, S.W.; Shin, J.-G.; Kim, Y.; Park, S.G.; Won, H.-H.; Kang, N.G. GWAS Identifies Multiple Genetic Loci for Skin Color in Korean Women. J. Investig. Dermatol. 2022, 142, 1077–1084. [Google Scholar] [CrossRef]
- Djordjevic, J.; Zhurov, A.I.; Richmond, S.; Visigen Consortium. Genetic and Environmental Contributions to Facial Morphological Variation: A 3D Population-Based Twin Study. PLoS ONE 2016, 11, e0162250. [Google Scholar] [CrossRef] [Green Version]
- Tsagkrasoulis, D.; Hysi, P.; Spector, T.; Montana, G. Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping. Sci. Rep. 2017, 7, 45885. [Google Scholar] [CrossRef] [Green Version]
- Claes, P.; Hill, H.; Shriver, M.D. Toward DNA-based facial composites: Preliminary results and validation. Forensic Sci. Int. Genet. 2014, 13, 208–216. [Google Scholar] [CrossRef]
- Tabarek, M.N.; Alkazaz, A.K.A. The two single nucleotide polymorphism haplotypes on chromosome 15 of the herc2 and oca2 genes of the color variation of the human eye in a sample of iraqi population. Iraqi J. Agric. Sci. 2022, 53, 67–74. [Google Scholar]
- Rafati, A.; Hosseini, M.; Tavallaei, M.; Naderi, M.; Sarveazad, A. Association of rs12913832 in the HERC2 Gene Affecting Human Iris Color Variation. Anat. Sci. J. 2015, 12, 9–16. [Google Scholar]
- Claes, P.; Liberton, D.K.; Daniels, K.; Rosana, K.M.; Quillen, E.E.; Pearson, L.N.; McEvoy, B.; Bauchet, M.; Zaidi, A.A.; Yao, W.; et al. Modeling 3D Facial Shape from DNA. PLOS Genet. 2014, 10, e1004224. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Van Der Lijn, F.; Schurmann, C.; Zhu, G.; Chakravarty, M.M.; Hysi, P.G.; Wollstein, A.; Lao, O.; de Bruijne, M.; Ikram, M.A.; et al. A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans. PLoS Genet. 2012, 8, e1002932. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Tan, J.; Hu, S.; Zhou, H.; Guo, J.; Jin, L.; Tang, K. Detecting Genetic Association of Common Human Facial Morphological Variation Using High Density 3D Image Registration. PLOS Comput. Biol. 2013, 9, e1003375. [Google Scholar] [CrossRef] [Green Version]
- HIrisPlex-S Eye, Hair and Skin Colour DNA Phenotyping Webtool. Available online: https://hirisplex.erasmusmc.nl/ (accessed on 8 May 2022).
- Wilkinson, C. Craniofacial Identification; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Claes, P.; Vandermeulen, D.; De Greef, S.; Willems, G.; Clement, J.G.; Suetens, P. Computerized craniofacial reconstruction: Conceptual framework and review. Forensic Sci. Int. 2010, 201, 138–145. [Google Scholar] [CrossRef]
- Claes, P.; Vandermeulen, D.; De Greef, S.; Willems, G.; Suetens, P. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: Methodology and validation. Forensic Sci. Int. 2006, 159, S147–S158. [Google Scholar] [CrossRef]
- Decker, S.; Ford, J.; Davy-Jow, S.; Faraut, P.; Neville, W.; Hilbelink, D. Who is this person? A comparison study of current three-dimensional facial approximation methods. Forensic Sci. Int. 2013, 229, 161.e1–161.e8. [Google Scholar] [CrossRef]
- Qian, W.; Zhang, M.; Wan, K.; Xie, Y.; Du, S.; Li, J.; Mu, X.; Qiu, J.; Xue, X.; Zhuang, X.; et al. Genetic evidence for facial variation being a composite phenotype of cranial variation and facial soft tissue thickness. J. Genet. Genom. 2022, 49, 934–942. [Google Scholar] [CrossRef]
- Fagertun, J.; Wolffhechel, K.; Pers, T.H.; Nielsen, H.B.; Gudbjartsson, D.; Stefansson, H.; Stefansson, K.; Paulsen, R.R.; Jarmer, H. Predicting facial characteristics from complex polygenic variations. Forensic Sci. Int. Genet. 2015, 19, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, K.; Fontanil, T.; Cal, S.; Mendoza-Revilla, J.; Fuentes-Guajardo, M.; Chacon-Duque, J.C.; Al-Saadi, F.; Johansson, J.A.; Quinto-Sanchez, M.; Acuña-Alonzo, V.; et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 2016, 7, 10815. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Dankova, G.; Howe, L.J.; Lee, M.K.; Hysi, P.G.; de Jong, M.A.; Zhu, G.; Adhikari, K.; Li, D.; Li, Y.; et al. Novel genetic loci affecting facial shape variation in humans. eLife 2019, 8, e49898. [Google Scholar] [CrossRef]
- Thompson, T.; Black, S. Forensic Human Identification: An Introduction; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wilkinson, C. Facial Anthropology and Reconstruction. In Forensic Human Identification; CRC Press: Boca Raton, FL, USA, 2006; pp. 231–255. [Google Scholar] [CrossRef]
- Fullwiley, D. Can DNA ‘Witness’ Race?: Forensic Uses of an Imperfect Ancestry Testing Technology. Genewatch 2008, 21, 12–14. [Google Scholar]
- Kayser, M.; Schneider, P.M. DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Sci. Int. Genet. 2009, 3, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Porras, A.R.; Rosenbaum, K.; Tor-Diez, C.; Summar, M.; Linguraru, M.G. Development and evaluation of a machine learning-based point-of-care screening tool for genetic syndromes in children: A multinational retrospective study. Lancet Digit. Health 2021, 3, e635–e643. [Google Scholar] [CrossRef]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Ferry, Q.; Steinberg, J.; Webber, C.; FitzPatrick, D.R.; Ponting, C.P.; Zisserman, A.; Nellåker, C. Diagnostically relevant facial gestalt information from ordinary photos. eLife 2014, 3, e02020. [Google Scholar] [CrossRef]
- Hsieh, T.-C.; Bar-Haim, A.; Moosa, S.; Ehmke, N.; Gripp, K.W.; Pantel, J.T.; Danyel, M.; Mensah, M.A.; Horn, D.; Rosnev, S.; et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat. Genet. 2022, 54, 349–357. [Google Scholar] [CrossRef]
- Palmer, R.L.; Helmholz, P.; Baynam, G. Cliniface: Phenotypic visualisation and analysis using non-rigid registration of 3d facial images. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 301–308. [Google Scholar] [CrossRef]
- Butler, J.M. The future of forensic DNA analysis. Philos. Trans. R. Soc. B: Biol. Sci. 2015, 370, 20140252. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, K. Forensic DNA Phenotyping: Significance in Criminal Investigations. Forensic Sci. 2020, 3, WGK360047. [Google Scholar]
- Hedstrom, J. Scanning Process: It’s Easy to Generate a 3D Printing. 3D Printing Blog: Tutorials, News, Trends and Resources | Sculpteo. Available online: https://www.sculpteo.com/blog/2015/11/11/scanning-for-3d-printing-using-photogrammetry/ (accessed on 8 May 2022).
- Carreel, E.; Moreau, C. “How to 3D Scan with a Phone: Here Are Our Best Tips.” Sculpteo Inc. 29 January 2020. Available online: https://www.sculpteo.com/en/3d-learning-hub/best-articles-about-3d-printing/3d-scan-smartphone/ (accessed on 8 May 2022).
- #1 Mobile 3D Scanning App for iPad. 23 April 2014. Available online: https://itseez3d.com/scanner.html (accessed on 8 May 2022).
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photon. 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Ebrahim, M.A.B. 3D Laser Scanners’ Techniques Overview. Int. J. Sci. Res. (IJSR) 2015, 4, 5–611. [Google Scholar]
- LMI Technologies Inc. Vision Online, 03-Aug-2016. Available online: https://www.visiononline.org/vision-resources-details.cfm/vision-resources/Structured-Light-vs-Laser-Triangulation-for-3D-Scanning-and-Inspection/content_id/6071 (accessed on 10 November 2020).
- Bernardini, H.R.F. The 3D Model Acquisition Pipeline. Comput. Graph. Forum 2002, 21, 149–172. [Google Scholar] [CrossRef]
- Peiravi, A.; Taabbodi, B. A reliable 3D laser triangulation-based scanner with a new simple but accurate procedure for finding scanner parameters. J. Am. Sci. 2010, 6, 80–85. [Google Scholar]
- Kau, C.H.; Richmond, S. Three-dimensional analysis of facial morphology surface changes in untreated children from 12 to 14 years of age. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 751–760. [Google Scholar] [CrossRef]
- Abbas, H.H.; Hicks, Y.; Zhurov, A.; Marshall, D.; Claes, P.; Wilson-Nagrani, C.; Richmond, S. An automatic approach for classification and categorisation of lip morphological traits. PLoS ONE 2019, 14, e0221197. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, A.; Ioannidis, C.; Valanis, A. Assessing the performance of a structured light scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 251–255. [Google Scholar]
- Revopoint3d High-Accuracy Handheld 3D Scanner Handysense Developed by Revopoint. 2019. Available online: https://www.revopoint3d.com/handheld-3d-scanner-handysense/ (accessed on 8 November 2020).
- Pucciarelli, V.; Gibelli, D.M.; Codari, M.; Sforza, C. Laser Scanner Versus Stereophotogrammetry: A Three-Dimensional Quantitative Approach for Morphological; Hometrica Consulting: Ascona, Switzerland, 2016; pp. 80–87. [Google Scholar]
- Canfield Scientific Inc. VECTRA M3 3D Imaging System. www.canfieldsci.com. 2020. Available online: https://www.canfieldsci.com/imaging-systems/vectra-m3-3d-imaging-system/ (accessed on 8 November 2020).
- Lane, C.; Duncan, K.; Nugent, M. 3dMD Products—3dMD, LLC. 3dmd.com. 2020. Available online: https://3dmd.com/products/#!/head (accessed on 8 November 2020).
- Artec3D Company Artec Eva. www.artec3d.com. 2020. Available online: https://www.artec3d.com/portable-3d-scanners/artec-eva?utm_source=google&utm_medium=cpc&utm_campaign=2030432791&utm_term=%2Bartec%20%2Beva||kwd-57271721806&utm_content=71839602156||&keyword=%2Bartec%20%2Beva&gclid=Cj0KCQiAy579BRCPARIsAB6QoIYRa3X-b28HsyzYRfP37TKS63H2AKnkcmSUE6VQlmZdMpcyVrskc1EaAhw5EALw_wcB. (accessed on 8 November 2020).
- Canfield Scientific Inc. VECTRA H1 3D Imaging System. www.canfieldsci.com. 2020. Available online: https://www.canfieldsci.com/imaging-systems/vectra-h1-3d-imaging-system/ (accessed on 8 November 2020).
- Minolta, K. VIVID 910—Laser Scanner. Laser Scanner. 2015. Available online: http://laserscannervivid.blogspot.com/2015/05/vivid-910.html. (accessed on 16 December 2020).
- Aeria, G.; Claes, P.; Vandermeulen, D.; Clement, J.G. Targeting specific facial variation for different identification tasks. Forensic Sci. Int. 2010, 201, 118–124. [Google Scholar] [CrossRef]
- Vuollo, V.; Sidlauskas, M.; Sidlauskas, A.; Harila, V.; Salomskiene, L.; Zhurov, A.; Holmström, L.; Pirttiniemi, P.; Heikkinen, T. Comparing Facial 3D Analysis With DNA Testing to Determine Zygosities of Twins. Twin Res. Hum. Genet. 2015, 18, 306–313. [Google Scholar] [CrossRef]
- Crouch, D.J.M.; Winney, B.; Koppen, W.P.; Christmas, W.J.; Hutnik, K.; Day, T.; Meena, D.; Boumertit, A.; Hysi, P.; Nessa, A.; et al. Genetics of the human face: Identification of large-effect single gene variants. Proc. Natl. Acad. Sci. USA 2018, 115, E676–E685. [Google Scholar] [CrossRef] [Green Version]
- Sero, D.; Zaidi, A.; Li, J.; White, J.D.; Zarzar, T.B.G.; Marazita, M.L.; Weinberg, S.M.; Suetens, P.; Vandermeulen, D.; Wagner, J.K.; et al. Facial recognition from DNA using face-to-DNA classifiers. Nat. Commun. 2019, 10, 2557. [Google Scholar] [CrossRef] [Green Version]
- Camison, L.; Bykowski, M.; Lee, W.W.; Carlson, J.C.; Roosenboom, J.; Goldstein, J.A.; Losee, J.E.; Weinberg, S.M. Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int. J. Oral Maxillofac. Surg. 2018, 47, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Savoldelli, C.; Benat, G.; Castillo, L.; Chamorey, E.; Lutz, J.-C. Accuracy, repeatability and reproducibility of a handheld three-dimensional facial imaging device: The Vectra H1. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Modabber, A.; Peters, F.; Brokmeier, A.; Goloborodko, E.; Ghassemi, A.; Lethaus, B.; Hölzle, F.; Möhlhenrich, S.C. Influence of Connecting Two Standalone Mobile Three-Dimensional Scanners on Accuracy Comparing with a Standard Device in Facial Scanning. J. Oral Maxillofac. Res. 2016, 7, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almulla, S.; Premjani, P.; Vaid, N.R.; Fadia, D.F.; Ferguson, D.J. Evaluating the accuracy of facial models obtained from volume wrapping: 2D images on CBCT versus 3D on CBCT. Semin. Orthod. 2018, 24, 443–450. [Google Scholar] [CrossRef]
- Toma, A.M.; Zhurov, A.; Playle, R.; Ong, E.; Richmond, S. Reproducibility of facial soft tissue landmarks on 3D laser-scanned facial images. Orthod. Craniofacial Res. 2009, 12, 33–42. [Google Scholar] [CrossRef]
- Weinberg, S.; Scott, N.M.; Neiswanger, K.; Brandon, C.A.; Marazita, M.L. Digital Three-Dimensional Photogrammetry: Evaluation of Anthropometric Precision and Accuracy Using a Genex 3D Camera System. Cleft Palate-Craniofacial J. 2004, 41, 507–518. [Google Scholar] [CrossRef]
- Çeliktutan, O.; Ulukaya, S.; Sankur, B. A comparative study of face landmarking techniques. EURASIP J. Image Video Process. 2013, 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Moyers, R.E.; Bookstein, F.L. The inappropriateness of conventional cephalometrics. Am. J. Orthod. 1979, 75, 599–617. [Google Scholar] [CrossRef]
- Fagertun, J.; Harder, S.; Rosengren, A.; Moeller, C.; Werge, T.; Paulsen, R.R.; Hansen, T.F. 3D facial landmarks: Inter-operator variability of manual annotation. BMC Med. Imaging 2014, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Von Cramon-Taubadel, N.; Frazier, B.C.; Lahr, M.M. The problem of assessing landmark error in geometric morphometrics: Theory, methods, and modifications. Am. J. Phys. Anthropol. 2007, 134, 24–35. [Google Scholar] [CrossRef]
- Wong, J.Y.; Oh, A.K.; Ohta, E.; Hunt, A.T.; Rogers, G.F.; Mulliken, J.B.; Deutsch, C.K. Validity and Reliability of Craniofacial Anthropometric Measurement of 3D Digital Photogrammetric Images. Cleft Palate-Craniofac. J. 2008, 45, 232–239. [Google Scholar] [CrossRef]
- Halazonetis, D. Viewbox 4 Software—Viewbox Cephalometric Software. 2014. Available online: http://www.dhal.com/index.htm (accessed on 16 November 2020).
- Adams, D.C.; Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 2013, 4, 393–399. [Google Scholar] [CrossRef]
- Nazri, A.; Agbolade, O.; Yaakob, R.; Ghani, A.A.; Cheah, Y.K. A novel investigation of the effect of iterations in sliding semi-landmarks for 3D human facial images. BMC Bioinform. 2020, 21, 208. [Google Scholar] [CrossRef]
- Segundo, M.P.; Silva, L.; Bellon, O.R.P.; Queirolo, C.C. Automatic Face Segmentation and Facial Landmark Detection in Range Images. IEEE Trans. Syst. Man Cybern. Part B 2010, 40, 1319–1330. [Google Scholar] [CrossRef]
- Vezzetti, E.; Marcolin, F.; Tornincasa, S.; Ulrich, L.; Dagnes, N. 3D geometry-based automatic landmark localization in presence of facial occlusions. Multimed. Tools Appl. 2017, 77, 14177–14205. [Google Scholar] [CrossRef]
- Vezzetti, E.; Marcolin, F. 3D Landmarking in Multiexpression Face Analysis: A Preliminary Study on Eyebrows and Mouth. Aesthetic Plast. Surg. 2014, 38, 796–811. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, P.; Bhattacharjee, D.; Nasipuri, M.; Basu, D.K. A novel approach to nose-tip and eye corners detection using H-K curvature analysis in case of 3D images. In Proceedings of the 2012 Third International Conference on Emerging Applications of Information Technology, Kolkata, India, 30 November–1 December 2012; pp. 311–315. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Wang, B.; Sui, L. Nose tip detection on three-dimensional faces using pose-invariant differential surface features. IET Comput. Vis. 2014, 9, 75–84. [Google Scholar] [CrossRef]
- Boukamcha, H.; Elhallek, M.; Atri, M.; Smach, F. 3D face landmark auto detection. In Proceedings of the 2015 World Symposium on Computer Networks and Information Security (WSCNIS), Hammamet, Tunisia, 19–21 September 2015; pp. 1–6. [Google Scholar]
- De Giorgis, N.; Rocca, L.; Puppo, E. Scale-Space Techniques for Fiducial Points Extraction from 3D Faces. In Proceedings of the Image Analysis and Processing—ICIAP, Genoa, Italy, 7–11 September 2015; pp. 421–431. [Google Scholar] [CrossRef]
- Cha, S.; Lim, J.E.; Park, A.Y.; Do, J.-H.; Lee, S.W.; Shin, C.; Cho, N.H.; Kang, J.-O.; Nam, J.M.; Kim, J.-S.; et al. Identification of five novel genetic loci related to facial morphology by genome-wide association studies. BMC Genom. 2018, 19, 481. [Google Scholar] [CrossRef]
- Face Mesh. mediapipe. Available online: https://google.github.io/mediapipe/solutions/face_mesh.html. (accessed on 30 April 2022).
- Zhang, Y.; Prakash, E.C. Face to Face: Anthropometry-Based Interactive Face Shape Modeling Using Model Priors. Int. J. Comput. Games Technol. 2009, 2009, 1–15. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Ortega-Castrillón, A.; Matthews, H.; Zaidi, A.A.; Ekrami, O.; Snyders, J.; Fan, Y.; Penington, T.; Van Dongen, S.; Shriver, M.D.; et al. MeshMonk: Open-source large-scale intensive 3D phenotyping. Sci. Rep. 2019, 9, 6085. [Google Scholar] [CrossRef] [Green Version]
- Hoskens, H.; Li, J.; Indencleef, K.; Gors, D.; Larmuseau, M.H.D.; Richmond, S.; Zhurov, A.I.; Hens, G.; Peeters, H.; Claes, P. Spatially Dense 3D Facial Heritability and Modules of Co-heritability in a Father-Offspring Design. Front. Genet. 2018, 9, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J. Investigations into the Genetic Architecture of the Human Face; Pennsylvania State University: State College, PA, USA, 2019. [Google Scholar]
- De Jong, M.A.; Wollstein, A.; Ruff, C.; Dunaway, D.; Hysi, P.; Spector, T.; Liu, F.; Niessen, W.; Koudstaal, M.J.; Kayser, M.; et al. An Automatic 3D Facial Landmarking Algorithm Using 2D Gabor Wavelets. IEEE Trans. Image Process. 2016, 25, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Hallgrimsson, B.; Mio, W.; Marcucio, R.S.; Spritz, R. Let’s face it--complex traits are just not that simple. PLoS Genet. 2014, 10, e1004724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, J.R.; Orlova, E.; Lee, M.K.; Leslie, E.J.; Raffensperger, Z.D.; Heike, C.L.; Cunningham, M.L.; Hecht, J.T.; Kau, C.H.; Nidey, N.L.; et al. Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLOS Genet. 2016, 12, e1006149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltoft, B.L.; Pedersen, C.B.; Nyegaard, M.; Hobolth, A. The importance of distinguishing between the odds ratio and the incidence rate ratio in GWAS. BMC Med. Genet. 2015, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef]
- Hoskens, H.; Liu, D.; Naqvi, S.; Lee, M.K.; Eller, R.J.; Indencleef, K.; White, J.D.; Li, J.; Larmuseau, M.H.D.; Hens, G.; et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet. 2021, 17, e1009528. [Google Scholar] [CrossRef]
- Adhikari, K.; Fuentes-Guajardo, M.; Quinto-Sánchez, M.; Mendoza-Revilla, J.; Camilo Chacón-Duque, J.; Acuña-Alonzo, V.; Jaramillo, C.; Arias, W.; Lozano, R.B.; Pérez, G.M.; et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 2016, 7, 11616. [Google Scholar] [CrossRef] [Green Version]
- Laville, V.; Le Clerc, S.; Ezzedine, K.; Jdid, R.; Taing, L.; Labib, T.; Coulonges, C.; Ulveling, D.; Galan, P.; Guinot, C.; et al. A genome wide association study identifies new genes potentially associated with eyelid sagging. Exp. Dermatol. 2019, 28, 892–898. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Qiao, L.; Liu, Y.; Peng, Q.; Wu, S.; Zhang, M.; Yang, Y.; Tan, J.; Xu, S.; et al. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J. Genet. Genom. 2019, 48, 198–207. [Google Scholar] [CrossRef]
- Bonfante, B.; Faux, P.; Navarro, N.; Mendoza-Revilla, J.; Dubied, M.; Montillot, C.; Wentworth, E.; Poloni, L.; Varón-González, C.; Jones, P.; et al. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation. Sci. Adv. 2021, 7, i161–i168. [Google Scholar] [CrossRef]
- Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Ségurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016, 48, 709. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Lee, M.K.; Naqvi, S.; Hoskens, H.; Liu, D.; White, J.D.; Indencleef, K.; Matthews, H.; Eller, R.J.; Li, J.; et al. Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genet. 2021, 17, e1009695. [Google Scholar] [CrossRef]
- Endo, C.; Johnson, T.A.; Morino, R.; Nakazono, K.; Kamitsuji, S.; Akita, M.; Kawajiri, M.; Yamasaki, T.; Kami, A.; Hoshi, Y.; et al. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci. Rep. 2018, 8, 8974. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Shaffer, J.R.; Leslie, E.J.; Orlova, E.; Carlson, J.C.; Feingold, E.; Marazita, M.L.; Weinberg, S.M. Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PLoS ONE 2017, 12, e0176566. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Shen, N.; Li, J.J.; Kang, H.; Hong, J.; Fletcher, J.; Greenberg, J.; Mailick, M.R.; Lu, Q. Genome-wide association study reveals sex-specific genetic architecture of facial attractiveness. PLoS Genet. 2019, 15, e1007973. [Google Scholar] [CrossRef]
- Claes, P.; Roosenboom, J.; White, J.D.; Swigut, T.; Sero, D.; Li, J.; Lee, M.K.; Zaidi, A.; Mattern, B.C.; Liebowitz, C.; et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 2018, 50, 414–423. [Google Scholar] [CrossRef]
- Qiao, L.; Yang, Y.; Fu, P.; Hu, S.; Zhou, H.; Peng, S.; Tan, J.; Lu, Y.; Lou, H.; Lu, D.; et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J. Genet. Genom. 2018, 45, 419–432. [Google Scholar] [CrossRef]
- White, J.D.; Indencleef, K.; Naqvi, S.; Eller, R.J.; Hoskens, H.; Roosenboom, J.; Lee, M.K.; Li, J.; Mohammed, J.; Richmond, S.; et al. Insights into the genetic architecture of the human face. Nat. Genet. 2021, 53, 45–53. [Google Scholar] [CrossRef]
- Jacobs, L.C.; Liu, F.; Bleyen, I.; Gunn, D.; Hofman, A.; Klaver, C.C.W.; Uitterlinden, A.G.; Neumann, H.A.M.; Bataille, V.; Spector, T.D.; et al. Intrinsic and Extrinsic Risk Factors for Sagging Eyelids. JAMA Dermatol. 2014, 150, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Howe, L.J.; Lee, M.K.; Sharp, G.C.; Smith, G.D.; Pourcain, B.S.; Shaffer, J.R.; Ludwig, K.U.; Mangold, E.; Marazita, M.L.; Feingold, E.; et al. Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology. PLoS Genet. 2018, 14, e1007501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indencleef, K.; Hoskens, H.; Lee, M.K.; White, J.D.; Liu, C.; Eller, R.J.; Naqvi, S.; Wehby, G.L.; Uribe, L.M.M.; Hecht, J.T.; et al. The Intersection of the Genetic Architectures of Orofacial Clefts and Normal Facial Variation. Front. Genet. 2021, 12, 626403. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Lee, C. Statistical power for identifying nucleotide markers associated with quantitative traits in genome-wide association analysis using a mixed model. Genomics 2015, 105, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Fadista, J.; Manning, A.K.; Florez, J.C.; Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 2016, 24, 1202–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaler, A.S.; Purcell, L.C. Estimation of a significance threshold for genome-wide association studies. BMC Genom. 2019, 20, 618. [Google Scholar] [CrossRef] [Green Version]
- PABPC1L2B Gene. GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=PABPC1L2B (accessed on 1 October 2022).
- NAV3 Neuron Navigator 3 Homo Sapiens (Human)—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/89795. (accessed on 9 May 2022).
- Sun, Y.; Chen, Y.; Zhang, J.; Cao, L.; He, M.; Liu, X.; Zhao, N.; Yin, A.; Huang, H.; Wang, L. TMEM74 promotes tumor cell survival by inducing autophagy via interactions with ATG16L1 and ATG9A. Cell Death Dis. 2017, 8, e3031. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, J.; Xia, P.; Chen, W.; Wang, L. The Expression of TMEM74 in Liver Cancer and Lung Cancer Correlating With Survival Outcomes. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 618–625. [Google Scholar] [CrossRef]
- PAX3 Gene. Available online: https://medlineplus.gov/genetics/gene/pax3/ (accessed on 4 May 2022).
- GeneCards Human Gene Database ROCR Gene. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=ROCR. (accessed on 4 May 2022).
- Dessen, P. SUPT3H (SPT3 homolog, SAGA and STAGA complex component) Atlas Genet Cytogenet Oncol Haematol. 01-05-2003. Available online: https://atlasgeneticsoncology.org/gene/42451/supt3h-(spt3-homolog-saga-and-staga-complex-component) (accessed on 4 May 2022).
- Cleidocranial Dysplasia (CCD). 21 December 2021. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/cleidocranial-dysplasia-ccd. (accessed on 4 May 2022).
- NCBI Resource Coordinators. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016, 44, D7–D19. [Google Scholar] [CrossRef] [Green Version]
- Claes, P.; Walters, M.; Shriver, M.D.; Puts, D.; Gibson, G.; Clement, J.; Baynam, G.; Verbeke, G.; Vandermeulen, D.; Suetens, P. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics. J. Anat. 2012, 221, 97–114. [Google Scholar] [CrossRef]
- Hopman, S.M.J.; Merks, J.H.M.; Suttie, M.; Hennekam, R.C.M.; Hammond, P. Face shape differs in phylogenetically related populations. Eur. J. Hum. Genet. 2014, 22, 1268–1271. [Google Scholar] [CrossRef] [Green Version]
- Lippert, C.; Sabatini, R.; Maher, M.C.; Kang, E.Y.; Lee, S.; Arikan, O.; Harley, A.; Bernal, A.; Garst, P.; Lavrenko, V.; et al. Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl. Acad. Sci. USA 2017, 114, 10166–10171. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, M.M.; Hu, C.; Roe, D.J.; Chen, Z.; Halonen, M.; Guerra, S. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: Simulation and application. BMC Med. Res. Methodol. 2016, 16, 154. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Mak, T.S.-H.; O’Reilly, P. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Pośpiech, E.; Teisseyre, P.; Mielniczuk, J.; Branicki, W. Predicting Physical Appearance from DNA Data—Towards Genomic Solutions. Genes 2022, 13, 121. [Google Scholar] [CrossRef]
- Hopman, R. Opening up forensic DNA phenotyping: The logics of accuracy, commonality and valuing. New Genet. Soc. 2020, 39, 424–440. [Google Scholar] [CrossRef]
- Stephan, C.N.; Caple, J.M.; Guyomarc’H, P.; Claes, P. An overview of the latest developments in facial imaging. Forensic Sci. Res. 2019, 4, 10–28. [Google Scholar] [CrossRef]
- Claes, P.; Shriver, M. Establishing a Multidisciplinary Context for Modeling 3D Facial Shape from DNA. PLoS Genet. 2014, 10, e1004725. [Google Scholar] [CrossRef]
- Bañuelos, M.M.; Zavaleta, Y.J.A.; Roldan, A.; Reyes, R.-J.; Guardado, M.; Rojas, B.C.; Nyein, T.; Vega, A.R.; Santos, M.; Huerta-Sanchez, E.; et al. Associations between forensic loci and expression levels of neighboring genes may compromise medical privacy. Proc. Natl. Acad. Sci. USA 2022, 119, e2121024119. [Google Scholar] [CrossRef]
- Koops, B.-J.; Schellekens, M. Forensic DNA phenotyping: Regulatory issues. Columbia Sci. Technol. Law Rev. 2008, 9, 158–160. [Google Scholar] [CrossRef]
- Andorno, R. The right not to know: An autonomy based approach. J. Med. Ethic 2004, 30, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P. Uncharted waters: Next-generation sequencing and machine learning software allow forensic science to expand into phenotype prediction from DNA samples. EMBO Rep. 2018, 19, e45810. [Google Scholar] [CrossRef]
- Scudder, N.; McNevin, D.; Kelty, S.F.; Walsh, S.J.; Robertson, J. Forensic DNA phenotyping: Developing a model privacy impact assessment. Forensic Sci. Int. Genet. 2018, 34, 222–230. [Google Scholar] [CrossRef]
- Toom, V.; Wienroth, M.; M’Charek, A.; Prainsack, B.; Williams, R.; Duster, T.; Heinemann, T.; Kruse, C.; Machado, H.; Murphy, E. Approaching ethical, legal and social issues of emerging forensic DNA phenotyping (FDP) technologies comprehensively: Reply to ‘Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes’ by Manfred Kayser. Forensic Sci. Int. Genet. 2016, 22, e1–e4. [Google Scholar] [CrossRef] [Green Version]
- Queirós, F. The visibilities and invisibilities of race entangled with forensic DNA phenotyping technology. J. Forensic Leg. Med. 2019, 68, 101858. [Google Scholar] [CrossRef]
- Nogel, M.; Pádár, Z.; Czebe, A.; Kovács, G. Developing legal regulation of forensic DNA-phenotyping in Hungary. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 609–611. [Google Scholar] [CrossRef] [Green Version]
- Bouguila, J.; Khochtali, H. Facial plastic surgery and face recognition algorithms: Interaction and challenges. A scoping review and future directions. J. Stomatol. Oral. Maxillofac. Surg. 2020, 121, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shan, S.; Chen, X. Face Recognition after Plastic Surgery: A Comprehensive Study. In Proceedings of the Computer Vision—ACCV 2012, Daejeon, Korea, 5–9 November 2013; pp. 565–576. [Google Scholar] [CrossRef]
- Singh, R.; Vatsa, M.; Bhatt, H.S.; Bharadwaj, S.; Noore, A.; Nooreyezdan, S.S. Plastic Surgery: A New Dimension to Face Recognition. IEEE Trans. Inf. Secur. 2010, 5, 441–448. [Google Scholar] [CrossRef]
- Samuel, G.; Prainsack, B. Forensic DNA phenotyping in Europe: Views “on the ground” from those who have a professional stake in the technology. New Genet. Soc. 2018, 38, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Nappi, M.; Ricciardi, S.; Tistarelli, M. Deceiving faces: When plastic surgery challenges face recognition. Image Vis. Comput. 2016, 54, 71–82. [Google Scholar] [CrossRef]
- Hammond, P. The use of 3D face shape modelling in dysmorphology. Arch. Dis. Child. 2007, 92, 1120–1126. [Google Scholar] [CrossRef]
- De la Puente, M.; Xavier, C.; Mosquera, A.; Freire-Aradas, A.; Kalamara, V.; Vidaki, A.; Gross, T.; Revoir, A.; Pośpiech, E.; Kartasińska, E.; et al. VISAGE—Visible Attributes through Genomics. ResearchGate. 20 October 2020. Available online: https://www.researchgate.net/project/VISAGE-Visible-Attributes-through-Genomics (accessed on 27 February 2022).
- Katsara, M.-A.; Branicki, W.; Pośpiech, E.; Hysi, P.; Walsh, S.; Kayser, M.; Nothnagel, M. Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits. Forensic Sci. Int. Genet. 2020, 50, 102412. [Google Scholar] [CrossRef]
- Savran, A.; Alyüz, N.; Dibeklioğlu, H.; Çeliktutan, O.; Gökberk, B.; Sankur, B.; Akarun, L. Bosphorus Database for 3D Face Analysis. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 47–56. [Google Scholar] [CrossRef] [Green Version]
- Hodge, S. Current Controversies in the Use of DNA in Forensic Investigations. Univ. Baltim. Law Rev. 2018, 48, 39. [Google Scholar]
- Xavier, C.; de la Puente, M.; Mosquera-Miguel, A.; Freire-Aradas, A.; Kalamara, V.; Ralf, A.; Revoir, A.; Gross, T.; Schneider, P.; Ames, C.; et al. Development and inter-laboratory evaluation of the VISAGE Enhanced Tool for Appearance and Ancestry inference from DNA. Forensic Sci. Int. Genet. 2022, 61, 102779. [Google Scholar] [CrossRef]
- Livingston, A.B.G. Intermarriage in the U.S. 50 Years After Loving v. Virginia; Pew Research Center: Washington, DC, USA, 2017. [Google Scholar]
- Noroozi, R.; Ghafouri-Fard, S.; Pisarek, A.; Rudnicka, J.; Spólnicka, M.; Branicki, W.; Taheri, M.; Pośpiech, E. DNA methylation-based age clocks: From age prediction to age reversion. Ageing Res. Rev. 2021, 68, 101314. [Google Scholar] [CrossRef]
- Gunn, D.A.; Rexbye, H.; Griffiths, C.; Murray, P.G.; Fereday, A.; Catt, S.D.; Tomlin, C.C.; Strongitharm, B.H.; Perrett, D.; Catt, M.; et al. Why Some Women Look Young for Their Age. PLoS ONE 2009, 4, e8021. [Google Scholar] [CrossRef]
Model/Products | 3dMDhead | Canfield VECTRA H1 | Artec Eva | Konica Minolta Vivid 900 Laser Cameras (Mid Lens) |
---|---|---|---|---|
Realization | Active/Passive stereo photogrammetry | Passive Stereo Photogrammetry | Structured Light | Laser scan |
Coverage | Full 360-degree capture of the head, face, and neck | Capturing volume (H × W × D): 220 × 130 × 70 mm typical application: 100-degree of left, right, or front of face. | Closest (H × W): 90 × 70 mm Furthest (H × W): 180 × 140 mm | Closest (H × V): 204.7 × 153.6 mm Furthest (H × V) 830.6 × 622.9 mm |
3D Resolution | 0.2 mm | 0.8 mm geometric resolution (triangle edge length) | 0.5 mm | 0.016 mm |
3D Point Accuracy | 0.58 ± 0.11 mm | Average: 0.84 mm (range 0.19–1.54 mm) | 0.1 mm 0.03% over 100 cm | X: ±0.38 mm, Y: ±0.31 mm Z: ±0.20 to the Z reference plane |
Capture Speed | ~0.0015 s at highest resolution | 0.008 s | 0.067 s/frame | 0.3 s (fast mode)/2.5 s (Fine mode)/0.5 s (Color mode) |
Processing Speed | <15 s | ~20 s | 4 min (for facial scans) | 1 s (Fast) 1.5 s (Fine) |
File Size | 15–95 MB. Depends on configuration. | 8 MB | 10–20 MB (full-body scan ranges from 2–4 GB according to Artec3D technical support email) | 1.6 MB (fast), 3.6 MB (Fine) |
Geometric Representation | A continuous point cloud available as a textured mesh and densely textured point model | Mesh | Mesh | Original format converted to 3D by the utility software (640 × 480) |
Error in Geometry | <0.2 mm | <0.1 mm | <0.1 mm | N/A |
Approximate Price | Prices start at USD 25,700 (each system is costume-configured and upgraded from standard modules to meet the customer’s specific imaging workflow requirements) | USD 11,000 | ~USD 21,000 | USD 25,000 to 55,000 |
Utilized by | [119,120,121,122,123,124] | [123,124,125,126] | [125,126] | [109,127] |
Number of Associations for Each Gene | Genes | Facial Region | Phenotypes | Ancestry | Reference |
---|---|---|---|---|---|
2 | TRPC6 | Face | Upper facial depth | European | [154] |
Middle facial depth | European | [154] | |||
2 | LINC01470 | Face | Facial width measurement | European | [165] |
LINC01470, PRKAA1 | Facial width measurement | European | [165] | ||
2 | ZRANB2-AS2 | Face | Factor 13, vertical position of alar curvature relative to upper lip | European | [165] |
Factor 13, vertical position of alar curvature relative to upper lip | European | [165] | |||
2 | TRPM1, LINC02352 | Face | Facial width measurement | European | [165] |
Middle facial depth | European | [154] | |||
2 | RERE | Eye | Right eyelid peak position ratio | East Asian | [146] |
Tangent line angle of er3 | East Asian | [146] | |||
2 | ATP8A1 | Eye | Upper eyelid sagging severity | European | [170] |
Upper eyelid sagging severity | European | [170] | |||
2 | PABPC1L2A, PABPC1L2B | Eye | Factor 14, intercanthal width | European | [165] |
Intercanthal width | European | [154] | |||
2 | ZNF385D | Eye | Upper eyelid sagging severity | European | [170] |
Upper eyelid sagging severity | European | [170] | |||
2 | CACNA2D3 | Nose | Segment 52 | African | [163] |
Nose size | European | [162] | |||
2 | GLI3 | Nose | Segment 22 | European | [169] |
Nose wing breadth | Hispanic/Latin American | [158] | |||
2 | LINC00399, LINC00676 | Nose | Nose protrusion | Hispanic/Latin American | [161] |
Nose size | Hispanic/Latin American | [161] | |||
2 | LINC00676 | Nose | Nose size | European | [162] |
LINC00676, LINC00399 | Segment 20 | European | [169] | ||
2 | LINC01121, SIX2 | Nose | Columella size | Hispanic/Latin American | [161] |
Segment 44 | European | [169] | |||
2 | LINC01432 | Nose | Nostril size | Hispanic/Latin American | [161] |
Segment 54 | African | [163] | |||
2 | PAX3 | Nose | Nasion position | Hispanic/Latin American | [158] |
PAX3, RPL23AP28 | Segment 11 | European | [169] | ||
2 | PAX7 | Nose | Columella inclination | Hispanic/Latin American | [161] |
Segment 11 | European | [169] | |||
2 | PKHD1 | Nose | Segment 11 | European | [169] |
PKHD1, FTH1P5 | Segment 22 | European | [169] | ||
2 | PRDM16 | Nose | Nose roundness 1 | Hispanic/Latin American | [161] |
Nose size | Hispanic/Latin American | [161] | |||
2 | RUNX2, SUPT3H | Nose | Nose bridge breadth | Hispanic/Latin American | [158] |
Nose morphology measurement | East Asian | [160] | |||
2 | LINC00620 | Mouth | Mouth morphology measurement | European | [165] |
Lower lip height | European | [154] | |||
2 | LINC02820, RASSF9 | Mouth | Segment 30 | African | [163] |
Segment 9 | European | [169] | |||
2 | NAPB | Mouth | Factor 15, philtrum width | European | [165] |
Factor 15, philtrum width | European | [165] | |||
2 | PCCA | Mouth | Factor 5, width of mouth relative to central midface | European | [165] |
Factor 5, width of mouth relative to central midface | European | [165] | |||
2 | NAV3 | Mouth | Mouth morphology measurement | European | [165] |
Segment 35 | European | [169] | |||
2 | NHP2P2, HOXA1 | Mouth | Segment 9 | European | [169] |
Philtrum width | European | [171] | |||
2 | SACM1L | Mouth | Factor 5, width of mouth relative to central midface | European | [165] |
Labial fissure width | European | [154] | |||
2 | SDK1 | Mouth | Factor 5, width of mouth relative to central midface | European | [165] |
Factor 5, width of mouth relative to central midface | European | [165] | |||
2 | STXBP5-AS1 | Mouth | Lip protrusion | Hispanic/Latin American | [161] |
Lower lip protrusion | Hispanic/Latin American | [161] | |||
2 | LINC01117 | Chin/Lower face | Chin dimples | European | [162] |
Segment 24 | European | [169] | |||
2 | LINC01965 | Chin/Lower face | Chin dimples | European | [162] |
LINC01965, AHCYP3 | Jaw slope 2 | Hispanic/Latin American | [161] | ||
2 | CPED1 | Chin/Lower face | Jaw protrusion 2 | Hispanic/Latin American | [161] |
CPED1 | Jaw protrusion 5 | Hispanic/Latin American | [161] | ||
2 | RNU7-147P, PLCL1 | Chin/Lower face | Chin dimples | European | [162] |
Segment 53 | European | [169] | |||
2 | TNFSF12, TNFSF12-TNFSF13 | Chin/Lower face | Segment 26 | European | [169] |
Chin dimples | European | [162] | |||
2 | SEM1 | Chin/Lower face | Chin dimples | European | [162] |
Segment 54 | European | [169] | |||
2 | ADAM15 | Forehead | Segment 41 | African | [163] |
Chin/Lower face | Chin dimples | European | [162] | ||
2 | ADGRL4 | Face | Factor 9, facial height related to vertical position of nasion | European | [165] |
Mouth | Factor 5, width of mouth relative to central midface | European | [165] | ||
2 | CLYBL | Eye | Segment 59 | African | [163] |
Mouth | Factor 5, width of mouth relative to central midface | European | [165] | ||
2 | DENND1B | Face | Factor 4, facial height related to vertical position of gnathion | European | [165] |
Chin/Lower face | Chin morphology | East Asian | [160] | ||
2 | HDAC9 | Nose | Columella inclination | Hispanic/Latin American | [161] |
Mouth | Mouth morphology measurement | European | [165] | ||
2 | KCNQ1 | Face | Factor 13, vertical position of alar curvature relative to upper lip | European | [165] |
KCNQ1, KCNQ1OT1 | Mouth | Segment 9 | European | [169] | |
2 | LINC01376 | Nose | Segment 22 | European | [169] |
LINC01376 | Chin/Lower face | Segment 24 | European | [169] | |
2 | MN1 | Face | Middle facial depth | European | [154] |
Eye | Factor 8, orbital inclination due to vertical and horizontal position of exocanthion | European | [165] | ||
2 | PRRX1, GORAB | Chin/Lower face | Segment 51 | European | [169] |
PRRX1, MROH9 | Mouth | Segment 9 | European | [169] | |
2 | RAD51B | Nose | Nose size | European | [162] |
RAD51B | Mouth | Segment 17 | European | [169] | |
2 | RN7SL720P, BNC2 | Nose | Columella size | Hispanic/Latin American | [161] |
Chin/Lower face | Chin dimples | European | [162] | ||
2 | RPS27AP14, DMRT2 | Face | Factor 9, facial height related to vertical position of nasion | European | [165] |
Nose | Nose size | European | [162] | ||
2 | TBX3, UBA52P7 | Eye | Segment 14 | African | [163] |
Nose | Segment 5 | European | [169] | ||
2 | TMEM74 | Mouth | Factor 6, height of vermillion Lower lip | European | [165] |
TMEM74, EMC2 | Nose | Segment 10 | European | [169] | |
3 | VPS13B | Nose | Columella size | Hispanic/Latin American | [161] |
East Asian | [160] | ||||
Nasolabial angle | East Asian | [146] | |||
3 | LSP1 | Mouth | Lip thickness 1 | Hispanic/Latin American | [161] |
Lower lip thickness 1 | Hispanic/Latin American | [161] | |||
Lower lip thickness 2 | Hispanic/Latin American | [161] | |||
3 | WARS2 | Mouth | Lower lip thickness 2 | Hispanic/Latin American | [161] |
Lip thickness ratio 1 | Hispanic/Latin American | [161] | |||
Lip thickness ratio 2 | Hispanic/Latin American | [161] | |||
3 | BMP7 | Nose | Segment 23 | European | [169] |
Nose | Nose size | European | [162] | ||
Mouth | Factor 5, width of mouth relative to central midface | European | [165] | ||
3 | C17orf67 | Face | Lower facial depth | European | [154] |
C17orf67 | Eye | Factor 8, orbital inclination due to vertical and horizontal position of exocanthion | European | [165] | |
C17orf67, NOG | Mouth | Segment 38 | European | [169] | |
3 | CRYGFP, MEAF6P1 | Mouth | Factor 17, height of vermillion upper lip | European | [165] |
CRYGGP | Face | Cheek morphology partial-least-square model | East Asian +Admixed Ancestry | [168] | |
CRYGGP | Eye | Factor 8, orbital inclination due to vertical and horizontal position of exocanthion | European | [165] | |
3 | DLGAP1 | Eye | Upper eyelid sagging severity | European | [170] |
Eye | Upper eyelid sagging severity | European | [170] | ||
Mouth | Factor 6, height of vermillion Lower lip | European | [165] | ||
3 | MAGEF1, EPHB3 | Eye | Upper eyelid sagging severity | European | [170] |
Nose | Segment 5 | European | [169] | ||
Nose | Nose size | European | [162] | ||
3 | SMG6 | Forehead | Forehead protrusion 1 | Hispanic/Latin American | [161] |
Forehead | (Upper forehead slant angle) | East Asian | [146] | ||
Chin/Lower face | Segment 51 | European | [169] | ||
3 | THSD4 | Eye | Right eye tail length | East Asian | [146] |
Eye | Outercanthal width | East Asian | [146] | ||
Chin/Lower face | Segment 24 | European | [169] | ||
5 | Y_RNA | Face | Factor 13, vertical position of alar curvature relative to upper lip | European | [165] |
Y_RNA, ARHGAP15 | Chin/Lower face | Chin dimples | European | [162] | |
Y_RNA, CFAP20 | Eye | Factor 14, intercanthal width | European | [165] | |
Y_RNA, MED13 | Face | Factor 4, facial height related to vertical position of gnathion | European | [165] | |
Y_RNA, RPL35AP3 | Mouth | Factor 6, height of vermillion Lower lip | European | [165] | |
5 | SFRP2, DCHS2 | Nose | Nose roundness 1 | Hispanic/Latin American | [161] |
Nose roundness 3 | Hispanic/Latin American | [161] | |||
Nostril size | Hispanic/Latin American | [161] | |||
Segment 27 | African | [163] | |||
5 | SLC24A2, MLLT3 | Nose | Segment 48 | African | [163] |
SLC24A5 | Nose | Nose roundness 3 | Hispanic/Latin American | [161] | |
SLC24A5 | Mouth | Lip thickness 1 | Hispanic/Latin American | [161] | |
SLC24A5 | Mouth | Lower lip thickness 1 | Hispanic/Latin American | [161] | |
SLC24A5 | Mouth | Lower lip thickness 2 | Hispanic/Latin American | [161] | |
5 | SUPT3H | Forehead | Forehead protrusion 1 | Hispanic/Latin American | [161] |
SUPT3H | Nose | Nose morphology measurement | East Asian | [160] | |
SUPT3H | Nose | Nose morphology measurement | East Asian | [160] | |
SUPT3H | Chin/Lower face | Chin dimples | European | [162] | |
SUPT3H, CDC5L | Nose | Segment 23 | European | [169] | |
6 | CRB1 | Face | Factor 4, facial height related to vertical position of gnathion | European | [165] |
Mouth | Lip protrusion | Hispanic/Latin American | [161] | ||
Mouth | Lower lip protrusion | Hispanic/Latin American | [161] | ||
Chin/Lower face | Chin protrusion 1 | Hispanic/Latin American | [161] | ||
Chin/Lower face | Chin protrusion 2 | Hispanic/Latin American | [161] | ||
Chin/Lower face | Chin dimples | European | [162] | ||
6 | GCC2 | Mouth | Lip protrusion | Hispanic/Latin American | [161] |
Mouth | Lower lip protrusion | Hispanic/Latin American | [161] | ||
Chin/Lower face | Jaw protrusion 2 | Hispanic/Latin American | [161] | ||
Chin/Lower face | Jaw protrusion 5 | Hispanic/Latin American | [161] | ||
Chin/Lower face | Jaw slope 2 | Hispanic/Latin American | [161] | ||
Chin/Lower face | Lower face flatness | Hispanic/Latin American | [161] | ||
7 | CASC17 | Nose | Columella inclination | Hispanic/Latin American | [161] |
Nose | Nose roundness 1 | Hispanic/Latin American | [161] | ||
Nose | Nose size | Hispanic/Latin American | [161] | ||
Nose | Segment 5 | European | [169] | ||
Nose | Nasal tip protrusion | East Asian | [146] | ||
Nose | Profile nasal area | East Asian | [146] | ||
Chin/Lower face | Chin dimples | European | [162] | ||
8 | ROCR | Nose | Profile nasal angle | East Asian | [146] |
ROCR | Nose | Profile nasal angle | East Asian | [146] | |
ROCR | Nose | Nasal tip protrusion | East Asian | [146] | |
ROCR | Nose | Nasolabial angle | East Asian | [146] | |
ROCR | Nose | Nasal tip protrusion | East Asian | [146] | |
ROCR | Nose | Nasolabial angle | East Asian | [146] | |
ROCR | Nose | Nose size | European | [162] | |
ROCR, LINC01152 | Nose | Segment 44 | European | [169] | |
9 | MTX2, RPSAP25 | Eye | Right eye tail length | East Asian | [146] |
Eye | Eye morphology | East Asian | [160] | ||
Eye | Tangent line angle of er4 | East Asian | [146] | ||
Eye | Right eyelid peak position ratio | East Asian | [146] | ||
Eye | Tangent line angle of el3 | East Asian | [146] | ||
Eye | Tangent line angle of el4 | East Asian | [146] | ||
Eye | Tangent line angle of el6 | East Asian | [146] | ||
Eye | Tangent line angle of er3 | East Asian | [146] | ||
Mouth | Mouth morphology | East Asian | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehhi, A.; Almarzooqi, A.; Alhammadi, K.; Werghi, N.; Tay, G.K.; Alsafar, H. Advancement in Human Face Prediction Using DNA. Genes 2023, 14, 136. https://doi.org/10.3390/genes14010136
Alshehhi A, Almarzooqi A, Alhammadi K, Werghi N, Tay GK, Alsafar H. Advancement in Human Face Prediction Using DNA. Genes. 2023; 14(1):136. https://doi.org/10.3390/genes14010136
Chicago/Turabian StyleAlshehhi, Aamer, Aliya Almarzooqi, Khadija Alhammadi, Naoufel Werghi, Guan K. Tay, and Habiba Alsafar. 2023. "Advancement in Human Face Prediction Using DNA" Genes 14, no. 1: 136. https://doi.org/10.3390/genes14010136
APA StyleAlshehhi, A., Almarzooqi, A., Alhammadi, K., Werghi, N., Tay, G. K., & Alsafar, H. (2023). Advancement in Human Face Prediction Using DNA. Genes, 14(1), 136. https://doi.org/10.3390/genes14010136