Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Antibiotic Susceptibility Testing
2.2. Qualitative Biofilm Testing: The Congo Red Assay (CRA) Method
2.3. Quantitative Biofilm Assay: Tissue Culture Plate Method
2.4. DNA Isolation, Whole-Genome Sequencing, and Bioinformatic Analyses
3. Results
3.1. Qualitative Biofilm (Congo Red Assay) Method
3.2. Tissue Culture Plate Method (Quantitative Method)
3.3. Detection of Biofilm/Adherence-Associated Genes and Sequence Types (STs) Using WGS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asante, J.; Amoako, D.G.; Abia, A.L.; Somboro, A.M.; Govinden, U.; Bester, L.A.; Essack, S.Y. Review of Clinically and Epidemiologically Relevant Coagulase-Negative Staphylococci in Africa. Microb. Drug Resist. 2020, 26, 951–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingenberg, C.; Rønnestad, A.; Anderson, A.; Abrahamsen, T.; Zorman, J.; Villaruz, A.; Flaegstad, T.; Otto, M.; Sollid, J.E. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: Virulence factors and invasiveness. Clin. Microbiol. Infect. 2007, 13, 1100–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, C.; Tremblay, Y.D.; Lamarche, D.; Blondeau, A.; Gaudreau, A.M.; Labrie, J.; Malouin, F.; Jacques, M. Coagulase-negative staphylococci species affect biofilm formation of other coagulase-negative and coagulase-positive staphylococci. J. Dairy Sci. 2017, 100, 6454–6464. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaeghen, W.; Piepers, S.; Leroy, F.; Van Coillie, E.; Haesebrouck, F.; De Vliegher, S. Invited review: Effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J. Dairy Sci. 2014, 97, 5275–5293. [Google Scholar] [CrossRef] [Green Version]
- Mirzaee, M.; Najar Peerayeh, S.; Ghasemian, A.-M. Detection of icaABCD genes and biofilm formation in clinical isolates of methicillin resistant Staphylococcus aureus. Iran. J. Pathol. 2014, 9, 257–262. [Google Scholar]
- Ghasemian, A.; Peerayeh, S.N.; Bakhshi, B.; Mirzaee, M. The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) genes among clinical isolates of Staphylococcus aureus from hospitalized children. Iran. J. Pathol. 2015, 10, 258. [Google Scholar]
- Christensen, G.D.; Simpson, W.A.; Younger, J.; Baddour, L.; Barrett, F.; Melton, D.; Beachey, E. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Freeman, D.; Falkiner, F.; Keane, C. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Bexiga, R.; Nunes, S.; Carneiro, C.; Cavaco, L.; Bernardo, F.; Vilela, C. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet. Microbiol. 2006, 118, 133–140. [Google Scholar] [CrossRef]
- Raue, S.; Fan, S.-H.; Rosenstein, R.; Zabel, S.; Luqman, A.; Nieselt, K.; Götz, F. The Genome of Staphylococcus epidermidis O47. Front. Microbiol. 2020, 11, 2061. [Google Scholar] [CrossRef]
- O’Neill, E.; Pozzi, C.; Houston, P.; Humphreys, H.; Robinson, D.A.; Loughman, A.; Foster, T.J.; O’Gara, J.P. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 2008, 190, 3835–3850. [Google Scholar] [CrossRef] [Green Version]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, Í.; Penadés, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef] [Green Version]
- Rohde, H.; Burdelski, C.; Bartscht, K.; Hussain, M.; Buck, F.; Horstkotte, M.A.; Knobloch, J.K.M.; Heilmann, C.; Herrmann, M.; Mack, D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 2005, 55, 1883–1895. [Google Scholar] [CrossRef]
- Christner, M.; Franke, G.C.; Schommer, N.N.; Wendt, U.; Wegert, K.; Pehle, P.; Kroll, G.; Schulze, C.; Buck, F.; Mack, D. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol. 2010, 75, 187–207. [Google Scholar] [CrossRef]
- Heilmann, C. Adhesion mechanisms of staphylococci. In Bacterial Adhesion; Springer: Berlin/Heidelberg, Germany, 2011; pp. 105–123. [Google Scholar]
- Heilmann, C.; Schweitzer, O.; Gerke, C.; Vanittanakom, N.; Mack, D.; Götz, F. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 1996, 20, 1083–1091. [Google Scholar] [CrossRef]
- Dosler, S.; Karaaslan, E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 2014, 62, 32–37. [Google Scholar] [CrossRef]
- Haussler, S.; Fuqua, C. Biofilms 2012: New discoveries and significant wrinkles in a dynamic field. J. Bacteriol. 2013, 195, 2947–2958. [Google Scholar] [CrossRef] [Green Version]
- Jorge, P.; Lourenco, A.; Pereira, M.O. New trends in peptide-based anti-biofilm strategies: A review of recent achievements and bioinformatic approaches. Biofouling 2012, 28, 1033–1061. [Google Scholar] [CrossRef] [Green Version]
- Asante, J.; Hetsa, B.A.; Amoako, D.G.; Abia, A.L.K.; Bester, L.A.; Essack, S.Y. Multidrug-Resistant Coagulase-Negative Staphylococci Isolated from Bloodstream in the uMgungundlovu District of KwaZulu-Natal Province in South Africa: Emerging Pathogens. Antibiotics 2021, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.d.C.; Ferreira, L.M.; Nader Filho, A.; Zafalon, L.F.; Vicente, H.I.G.; Souza, V.d. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol. 2013, 44, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.; Séguin, D.L.; Asselin, A.-E.; Déziel, E.; Cantin, A.M.; Frost, E.H.; Michaud, S.; Malouin, F. Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol. 2010, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Houdt, R.; Aertsen, A.; Jansen, A.; Quintana, A.; Michiels, C. Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment. J. Appl. Microbiol. 2004, 96, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E. Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Res. Rev. J. Eng. Technol. 2017, 6, 4–42. [Google Scholar]
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Vallé, Q.; Hancock, R.E. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Foka, A.; Chini, V.; Petinaki, E.; Kolonitsiou, F.; Anastassiou, E.; Dimitracopoulos, G.; Spiliopoulou, I. Clonality of slime-producing methicillin-resistant coagulase-negative staphylococci disseminated in the neonatal intensive care unit of a university hospital. Clin. Microbiol. Infect. 2006, 12, 1230–1233. [Google Scholar] [CrossRef] [Green Version]
- Ziebuhr, W.; Heilmann, C.; Götz, F.; Meyer, P.; Wilms, K.; Straube, E.; Hacker, J. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 1997, 65, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, S.; Mani, S.; Kuppusamy, I.; Krishnan, P. Role of insertion sequence element IS256 as a virulence marker and its association with biofilm formation among methicillin-resistant Staphylococcus epidermidis from hospital and community settings in Chennai, South India. Indian J. Med. Microbiol. 2018, 36, 124–126. [Google Scholar] [CrossRef]
- Stewart, E.J.; Ganesan, M.; Younger, J.G.; Solomon, M.J. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly. Sci. Rep. 2015, 5, 13081. [Google Scholar] [CrossRef] [Green Version]
- Miragaia, M. Factors contributing to the evolution of Meca-mediated β-lactam resistance in staphylococci: Update and new insights from whole genome sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Zhu, Y.; Song, Y.; Li, T.; Luo, T.; Sun, G.; Yang, C.; Cao, C.; Lu, Y.; Li, M. Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PloS ONE 2013, 8, e62742. [Google Scholar] [CrossRef]
- Wolcott, R.; Rhoads, D.; Bennett, M.; Wolcott, B.; Gogokhia, L.; Costerton, J.; Dowd, S. Chronic wounds and the medical biofilm paradigm. J. Wound Care 2010, 19, 45–53. [Google Scholar] [CrossRef]
Item | Strongly Adherent (%) | Moderate (%) | Weak (%) | Total (%) |
---|---|---|---|---|
S. epidermidis | 3 (3.4) | 8 (8.9) | 5 (5.6) | 16 (17.9) |
S. hominis ssp. hominis | 2 (2.2) | 10 (11.2) | 2 (2.2) | 14 (15.7) |
S. sciuri | 5 (5.6) | 5 (5.6) | ||
S. lentus | 1 (1.1) | 9 (10.1) | 3 (3.4) | 13 (14.6) |
S. saprophyticus | 1 (1.1) | 2 (2.2) | 3 (3.4) | |
S. gallinarum | 1 (1.1) | 1 (1.1) | 2 (2.2) | |
S. capitis | 2 (2.2) | 2 (2.2) | ||
S. lugdunensis | 2 (2.2) | 2 (2.2) | ||
S. auricularis | 1 (1.1) | 1 (1.1) | ||
S. xylosus | 5 (5.6) | 5 (5.6) | ||
S. arlettae | 1 (1.1) | 1 (1.1) | ||
S. hominis | 4 (4.5) | 4 (4.5) | ||
S. succinus | 1 (1.1) | 2 (2.2) | 1 (1.1) | 4 (4.5) |
S. haemolyticus | 2 (2.2) | 11 (12.3) | 2 (2.2) | 15 (16.9) |
S. warneri | 1 (1.1) | 1 (1.1) |
Isolate | Ward | CoNS Species | Adherence/Biofilm-Associated Genes | MLST | Insertion Sequence IS256 |
---|---|---|---|---|---|
C7 | 3N ICU | S. haemolyticus | atl,ebp | ST3 | + |
C31 | A1 Paediatric | S. haemolyticus | atl, ebp | Unknown | − |
C35 | E1 Paediatric | S. epidermidis | atl, ebh, ebp, sdrE, sdrH, prgB/asc10, dltA, ebpC, pavA, flmH, slrA, plr/gapA, fsrA, fsrB, fsrC | Unknown | + |
C36 | Neonatal ICU | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, | ST54 | + |
C38 | H2 Medical | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, sdrC, sdrG, sdrH, prgB/asc10, dltA, ebpC, pavA, slrA, fsrA, fsrB, fsrC | ST83 | + |
C40 | 3N Extension | S. epidermidis | atl, ebh, clfA, ebp, icaA, icaB, icaC, icaR, sdrG, sdrH, prgB/asc10, dltA, ebpC, pavA, slrA, plr/gapA | ST54 | + |
C68 | 7F Paediatric | S. epidermidis | atl, ebh, ebp, sdrH, flmH | ST210 | − |
C81 | F2 Surgical ward | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, sdrG, sdrH, asa1, dltA, ebpC, fss3, pavA, slrA, plr/gapA | ST2 | + |
C119 | 2F Paediatric ICU | S. epidermidis | sdrH | Unknown | + |
C122 | Paediatric OPD | S. epidermidis | atl, ebh, ebp, sdrG, sdrH, hcpB, htpB, orfH, flmH, nueA, tapT, fimC, fimD, fimD, pilU, pilQ, adeG, pgaC | ST59 | − |
C127 | Paediatric OPD | S. epidermidis | atl, ebh, ebp, sdrG, sdrH, hcpB, flmH, nueA, fimC, fimD, pilU, pilQ, pgaC | ST59 | − |
C133 | Paediatric OPD | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, sdrC, sdrH | ST490 | − |
C135 | Paediatric OPD | S. epidermidis | atl, ebp, icaA, icaB, icaC, icaR, sdrH | Unknown | − |
C137 | Ward O | S. epidermidis | ebp, icaA, icaB, sdrF, sdrH, hcpB, htpB, orfH, flmH, nueA, tapT, fimA, fimC, fimD, pilU, pilQ, adeG, pgaC | Unknown | + |
C138 | H Ward | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, sdrH | Unknown | − |
C145 | Casualty | S. epidermidis | atl, ebh, ebp, icaA, icaB, icaC, icaR, sdrG, sdrH, | ST2 | + |
C146 | Paediatric | S. epidermidis | atl, ebh, ebp, sdrG, sdrH, csgG, ecpA, fleR, fliQ, hcpB, htpB, orfH, flgC, flgC, plr/gapA, pilW, pgaC | ST640 | − |
C148 | Paediatric | S. epidermidis | atl, ebp | Unknown | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asante, J.; Abia, A.L.K.; Anokwah, D.; Hetsa, B.A.; Fatoba, D.O.; Bester, L.A.; Amoako, D.G. Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes 2023, 14, 104. https://doi.org/10.3390/genes14010104
Asante J, Abia ALK, Anokwah D, Hetsa BA, Fatoba DO, Bester LA, Amoako DG. Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes. 2023; 14(1):104. https://doi.org/10.3390/genes14010104
Chicago/Turabian StyleAsante, Jonathan, Akebe L. K. Abia, Daniel Anokwah, Bakoena A. Hetsa, Dorcas O. Fatoba, Linda A. Bester, and Daniel G. Amoako. 2023. "Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa" Genes 14, no. 1: 104. https://doi.org/10.3390/genes14010104