Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Sampling and Whole-Genome Resequencing
2.2. Single Nucleotide Polymorphism (SNP) Calling and Annotation
2.3. Phylogenetic and Population Structure Analyses
2.4. Genome-Wide Analysis of Genetic Diversity and Detection of the Selective Sweeps
2.5. Population−Specific SNP Analysis and Gene Flow Analysis
3. Results
3.1. Genetic Variation among Different Goat Breeds
3.2. Population Structure and Characterization of Hainan Black Goat
3.3. Genetic Diversity Analysis
3.4. Population−Specific SNP Annotation and Association Signals Unique to Hainan Black Goat Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample ID | Total_Bases (bp) | N (%) | Q20 (%) | HQ Data (bp) | HQ Data (%) | Mapping Rate | Average Sequencing Depth | Coverage |
---|---|---|---|---|---|---|---|---|
Hainan Black goat_1 | 13,584,864,300 | 0 | 96.28 | 12,527,482,833 | 92.22% | 99.88% | 4.25 | 89.64% |
Hainan Black goat_2 | 15,485,780,100 | 0 | 96.17 | 14,236,900,640 | 91.94% | 99.90% | 4.84 | 91.20% |
Hainan Black goat_3 | 14,716,361,400 | 0 | 96.07 | 13,488,996,224 | 91.66% | 99.94% | 4.59 | 90.38% |
Hainan Black goat_4 | 16,716,312,600 | 0 | 96.23 | 15,396,078,215 | 92.10% | 99.94% | 5.23 | 91.40% |
Hainan Black goat_5 | 15,751,188,000 | 0 | 96.04 | 14,422,422,757 | 91.56% | 99.93% | 4.9 | 90.98% |
Hainan Black goat_6 | 15,297,688,200 | 0 | 96.13 | 14,041,799,681 | 91.79% | 99.88% | 4.77 | 91.13% |
Hainan Black goat_7 | 15,320,376,600 | 0 | 96.39 | 14,171,314,464 | 92.50% | 99.94% | 4.82 | 90.87% |
Hainan Black goat_8 | 16,372,415,400 | 0 | 96.12 | 15,037,125,417 | 91.84% | 99.93% | 5.11 | 91.52% |
Hainan Black goat_9 | 15,913,153,200 | 0 | 96.43 | 14,736,742,814 | 92.61% | 99.90% | 5.01 | 91.63% |
Hainan Black goat_10 | 13,810,559,100 | 0 | 96.22 | 12,717,226,754 | 92.08% | 99.92% | 4.32 | 89.95% |
Hainan Black goat_11 | 13,731,244,200 | 0 | 96.32 | 12,678,431,083 | 92.33% | 99.88% | 4.31 | 89.77% |
Hainan Black goat_12 | 16,748,675,400 | 0 | 96.13 | 15,369,100,053 | 91.76% | 99.89% | 5.22 | 91.86% |
Hainan Black goat_13 | 14,571,807,000 | 0 | 96.35 | 13,465,639,951 | 92.41% | 99.91% | 4.57 | 90.44% |
Hainan Black goat_14 | 15,122,146,800 | 0 | 96.24 | 13,924,708,383 | 92.08% | 99.93% | 4.73 | 91.04% |
Hainan Black goat_15 | 15,353,257,500 | 0 | 96.67 | 14,317,418,918 | 93.00% | 99.94% | 4.86 | 90.89% |
Hainan Black goat_16 | 15,808,435,500 | 0 | 96.31 | 14,594,613,264 | 92.32% | 99.89% | 4.96 | 90.95% |
Chromosome Name | Location of Chromosome | Chromosome Name | Location of Chromosome |
---|---|---|---|
1 | 78,778,728 | 26 | 35,219,363 |
6 | 5,848,780 | 26 | 41,006,365 |
8 | 23,135,086 | 26 | 41,006,436 |
8 | 23,172,899 | 26 | 41,008,464 |
9 | 74,233,686 | 26 | 41,008,962 |
10 | 77,544,272 | 26 | 41,010,573 |
14 | 18,116,414 | 26 | 41,010,577 |
16 | 5,236,437 | 26 | 41,011,111 |
16 | 47,064,663 | 26 | 41,011,164 |
16 | 47,064,665 | 26 | 41,011,193 |
17 | 68,683,623 | 26 | 41,011,933 |
17 | 68,693,096 | 26 | 41,011,938 |
19 | 19,147,817 | 26 | 41,012,306 |
19 | 19,147,896 | 26 | 41,012,677 |
26 | 35,219,287 | 26 | 41,012,917 |
Chrom_Region | popC vs. Other Group Pi | Fst | Selected Region of the Group (popC or Other Groups) | Other Groups Region SNP Number | PopC Region SNP Number | DP | p-Value |
---|---|---|---|---|---|---|---|
6_105 | 0.866682 | 0.116275 | popC | 1 | 25 | 26 | 8.04663 × 10−7 |
6_106 | 1.07581 | 0.166754 | popC | 3 | 25 | 28 | 2.74405 × 10−5 |
6_110 | 1.02703 | 0.121998 | popC | 1 | 19 | 20 | 4.00543 × 10−5 |
6_48 | 0.681882 | 0.107921 | popC | 1 | 12 | 13 | 0.003417969 |
6_55 | 2.94601 | 0.175338 | other | 1 | 15 | 16 | 0.000518799 |
6_9 | 0.857881 | 0.163343 | popC | 1 | 13 | 14 | 0.001831055 |
1_91 | 2.35458 | 0.115189 | other | 1 | 13 | 14 | 0.001831055 |
14_6 | 2.33137 | 0.193648 | other | 3 | 27 | 30 | 8.43033 × 10−6 |
2_125 | 0.641667 | 0.15041 | popC | 1 | 13 | 14 | 0.001831055 |
2_72 | 2.37475 | 0.114937 | other | 1 | 12 | 13 | 0.003417969 |
20_34 | 0.790965 | 0.287315 | popC | 2 | 46 | 48 | 8.36309 × 10−12 |
21_58 | 0.944244 | 0.105186 | popC | 1 | 14 | 15 | 0.000976563 |
24_6 | 2.43801 | 0.129438 | other | 1 | 52 | 53 | 1.19904 × 10−14 |
20_0 | 0.987555 | 0.125236 | popC | 7 | 127 | 134 | 1.27449 × 10−29 |
21_67 | 3.28143 | 0.149103 | other | 1 | 26 | 27 | 4.17233 × 10−7 |
24_7 | 0.897105 | 0.140236 | popC | 2 | 22 | 24 | 0.000035882 |
1_62 | 0.777025 | 0.103702 | popC | 2 | 29 | 31 | 4.62867 × 10−7 |
10_63 | 2.45273 | 0.127692 | other | 3 | 18 | 21 | 0.001489639 |
17_43 | 0.971476 | 0.14971 | popC | 32 | 4 | 36 | 2.27214 × 10−7 |
4_22 | 2.69551 | 0.294825 | other | 13 | 1 | 14 | 0.00012207 |
1_63 | 1.0206 | 0.128021 | popC | 23 | 8 | 31 | 0.003326893 |
References
- Utaaker, K.S.; Chaudhary, S.; Kifleyohannes, T.; Robertson, L.J. Global Goat! Is the Expanding Goat Population an Important Reservoir of Cryptosporidium? Front. Vet. Sci. 2021, 8, 648500. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 1 July 2022).
- China National Commission of Animal Genetic Resources. Animal Genetic Resources in China: Sheep and Goats; Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Shi, L.; Zhang, Y.; Wu, L.; Xun, W.; Liu, Q.; Cao, T.; Hou, G.; Zhou, H. Moderate Coconut Oil Supplement Ameliorates Growth Performance and Ruminal Fermentation in Hainan Black Goat Kids. Front. Vet. Sci. 2020, 7, 622259. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Zhou, L.; Zhang, H.; Yang, H.; Peng, W.; Wu, K. Studying the variations in differently expressed serum proteins of Hainan Black goat during the breeding cycle using isobaric tags for relative and absolute quantitation (iTRAQ) technology. J. Reprod. Dev. 2019, 65, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qiu, Q.; Jiang, Y.; Wang, K.; Lin, Z.; Li, Z.; Bibi, F.; Yang, Y.; Wang, J.; Nie, W.; et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 2019, 364, eaav6202. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Su, R.; Wan, W.; Zhang, W.; Jiang, H.; Qiao, X.; Fan, Y.; Zhang, Y.; Wang, R.; Liu, Z.; et al. Identification of selection signals by large-scale whole-genome resequencing of Cashmere goats. Sci. Rep. 2017, 7, 15142. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci. Rep. 2018, 8, 10405. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, X.; Li, M.; Li, Y.; Yang, Z.; Wang, X.; Pan, X.; Gong, M.; Zhang, Y.; Guo, Y.; et al. The origin of domestication genes in goats. Sci. Adv. 2020, 6, eaaz5216. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Y.; Wang, Z.; Teng, S.; Hanif, Q.; Lei, C.; Sun, J. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene 2021, 771, 145371. [Google Scholar] [CrossRef]
- Dong, Y.; Xie, M.; Jiang, Y.; Xiao, N.; Du, X.; Zhang, W.; Tosser-Klopp, G.; Wang, J.; Yang, S.; Liang, J.; et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 2013, 31, 135–141. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Pickrell, J.K.; Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012, 8, e1002967. [Google Scholar] [CrossRef]
- Li, M.; Tian, S.; Jin, L.; Zhou, G.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.L.; Chen, L.; Ma, J.; et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet. 2013, 45, 1431–1438. [Google Scholar] [CrossRef]
- Indap, A.R.; Cole, R.; Runge, C.L.; Marth, G.T.; Olivier, M. Variant discovery in targeted resequencing using whole genome amplified DNA. BMC Genom. 2013, 14, 468. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Wang, X.; Yang, Z. The genetic diversity of seven indigenous Chinese goat breeds. Small Rumin. Res. 2008, 74, 231–237. [Google Scholar] [CrossRef]
- Rusiniak, M.E.; Yu, M.; Ross, D.T.; Tolhurst, E.C.; Slack, J.L. Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Cancer Res. 2000, 60, 1824–1829. [Google Scholar]
- Parnell, E.; Smith, B.O.; Yarwood, S.J. The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal. Cell. Signal. 2015, 27, 989–996. [Google Scholar] [CrossRef]
- Kohl, S.; Varsanyi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jägle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. EJHG 2005, 13, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Weisschuh, N.; Sturm, M.; Baumann, B.; Audo, I.; Ayuso, C.; Bocquet, B.; Branham, K.; Brooks, B.P.; Catalá-Mora, J.; Giorda, R.; et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum. Mutat. 2020, 41, 255–264. [Google Scholar] [CrossRef]
- Häfliger, I.M.; Marchionatti, E.; Stengård, M.; Wolf-Hofstetter, S.; Paris, J.M.; Jacinto, J.G.P.; Watté, C.; Voelter, K.; Occelli, L.M.; Komáromy, A.M.; et al. CNGB3 Missense Variant Causes Recessive Achromatopsia in Original Braunvieh Cattle. Int. J. Mol. Sci. 2021, 22, 12440. [Google Scholar] [CrossRef]
- Fatet, A.; Pellicer-Rubio, M.-T.; Leboeuf, B. Reproductive cycle of goats. Anim. Reprod. Sci. 2011, 124, 211–219. [Google Scholar] [CrossRef]
- Jia, L.; Shi, Y.; Wen, Y.; Li, W.; Feng, J.; Chen, C. The roles of TNFAIP2 in cancers and infectious diseases. J. Cell. Mol. Med. 2018, 22, 5188–5195. [Google Scholar] [CrossRef]
- Guo, F.; Yuan, Y. Tumor Necrosis Factor Alpha-Induced Proteins in Malignant Tumors: Progress and Prospects. OncoTargets Ther. 2020, 13, 3303–3318. [Google Scholar] [CrossRef]
- Di Gerlando, R.; Sardina, M.T.; Tolone, M.; Sutera, A.M.; Mastrangelo, S.; Portolano, B. Genome-wide detection of copy-number variations in local cattle breeds. Anim. Prod. Sci. 2018, 59, 815–822. [Google Scholar] [CrossRef]
- Henkel, J.; Saif, R.; Jagannathan, V.; Schmocker, C.; Zeindler, F.; Bangerter, E.; Herren, U.; Posantzis, D.; Bulut, Z.; Ammann, P.; et al. Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genet. 2019, 15, e1008536. [Google Scholar] [CrossRef]
- Signer-Hasler, H.; Henkel, J.; Bangerter, E.; Bulut, Z.; Drögemüller, C.; Leeb, T.; Flury, C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genet. Sel. Evol. 2022, 54, 6. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Plonka, P.M.; Passeron, T.; Brenner, M.; Tobin, D.J.; Shibahara, S.; Thomas, A.; Slominski, A.; Kadekaro, A.L.; Hershkovitz, D.; Peters, E.; et al. What are melanocytes really doing all day long...? Exp. Dermatol. 2009, 18, 799–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2002, 50, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Demiray, S.B.; Goker, E.N.T.; Tavmergen, E.; Yilmaz, O.; Calimlioglu, N.; Soykam, H.O.; Oktem, G.; Sezerman, U. Differential gene expression analysis of human cumulus cells. Clin. Exp. Reprod. Med. 2019, 46, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Wayne, C.M.; Fan, H.-Y.; Cheng, X.; Richards, J.S. Follicle-stimulating hormone induces multiple signaling cascades: Evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol. Endocrinol. 2007, 21, 1940–1957. [Google Scholar] [CrossRef]
- Gloaguen, P.; Crépieux, P.; Heitzler, D.; Poupon, A.; Reiter, E. Mapping the follicle-stimulating hormone-induced signaling networks. Front. Endocrinol. 2011, 2, 45. [Google Scholar] [CrossRef]
- Luan, X.; Liu, D.; Cao, Z.; Luo, L.; Liu, M.; Gao, M.; Zhang, X. Transcriptome profiling identifies differentially expressed genes in Huoyan goose ovaries between the laying period and ceased period. PLoS ONE 2014, 9, e113211. [Google Scholar] [CrossRef] [Green Version]
Group | Breed | Number | Origin | BioProject |
---|---|---|---|---|
popA | Longlin goat | 15 | South-central agricultural regions of China | PRJNA631433 |
popB | Leizhou goat | 5 | South-central agricultural regions of China | PRJNA399234 |
popC | Hainan Black goat | 16 | South-central agricultural regions of China | PRJNA754269 * |
popD | Dazu Black goat | 16 | South-west agricultural of China | PRJNA479946 |
popE | Jining Grey goat | 10 | North China | PRJNA560446 |
popF | Boer goat | 10 | South Africa | PRJEB25062 |
popG | Alashan Cashmere goat | 15 | Inner Mongolia of China | PRJNA338022 |
Population | Num Sam | Num Indv | Obs Het | Exp Het | Pi | Fis |
---|---|---|---|---|---|---|
Longlin goat | 15 | 11.3478 | 0.1808 | 0.2418 | 0.2531 | 0.196 |
Leizhou goat | 4 | 3.3589 | 0.1772 | 0.1858 | 0.2204 | 0.0822 |
Hainan Black goat | 16 | 14.9233 | 0.2278 | 0.2667 | 0.276 | 0.1448 |
Dazu Black goat | 14 | 10.8296 | 0.1851 | 0.2596 | 0.2727 | 0.237 |
Jining Grey goat | 10 | 8.2422 | 0.2119 | 0.2637 | 0.2811 | 0.1778 |
Boer goat | 10 | 5.5103 | 0.1778 | 0.2073 | 0.2307 | 0.1201 |
Alashan Cashmere goat | 13 | 6.5266 | 0.1872 | 0.2419 | 0.2638 | 0.1805 |
Leizhou Goat | Hainan Black Goat | Dazu Black Goat | Jining Grey Goat | Boer Goat | Alashan Cashmere Goat | |
---|---|---|---|---|---|---|
Longlin goat | 0.116601 | 0.075297 | 0.0730351 | 0.0824533 | 0.126503 | 0.0868544 |
Leizhou goat | 0.0411077 | 0.0879101 | 0.0992719 | 0.187433 * | 0.13665 | |
Hainan Black goat | 0.0514138 | 0.0552972 | 0.0908222 | 0.0682161 | ||
Dazu Black goat | 0.0650801 | 0.106479 | 0.0759338 | |||
Jining Grey goat | 0.0945023 | 0.070164 | ||||
Boer goat | 0.115508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Chai, Y.; Zhang, W.; Cheng, Y.; Zhang, Z.; An, Q.; Chen, S.; Man, C.; Du, L.; Zhang, W.; et al. Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat. Genes 2022, 13, 1539. https://doi.org/10.3390/genes13091539
Chen Q, Chai Y, Zhang W, Cheng Y, Zhang Z, An Q, Chen S, Man C, Du L, Zhang W, et al. Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat. Genes. 2022; 13(9):1539. https://doi.org/10.3390/genes13091539
Chicago/Turabian StyleChen, Qiaoling, Yuan Chai, Wencan Zhang, Yiwen Cheng, Zhenxing Zhang, Qi An, Si Chen, Churiga Man, Li Du, Wenguang Zhang, and et al. 2022. "Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat" Genes 13, no. 9: 1539. https://doi.org/10.3390/genes13091539
APA StyleChen, Q., Chai, Y., Zhang, W., Cheng, Y., Zhang, Z., An, Q., Chen, S., Man, C., Du, L., Zhang, W., & Wang, F. (2022). Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat. Genes, 13(9), 1539. https://doi.org/10.3390/genes13091539