Severe Immune-Related Adverse Events in Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma Are Associated with PDCD1 Polymorphism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Genetic Analysis
2.3. Statistical Analyses
2.4. Ethical Statement
3. Results
3.1. Patient Characteristics
3.2. Patient Outcomes and Genotypic Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.H.; Ordonez, M.A.; Iasonos, A.; Secin, F.P.; Guillonneau, B.; Russo, P.; Touijer, K. Renal cell carcinoma in young and old patients—Is there a difference? J. Urol. 2008, 180, 1262–1266, discussion 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juarez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Varricchi, G.; Marone, G.; Mercurio, V.; Galdiero, M.R.; Bonaduce, D.; Tocchetti, C.G. Immune Checkpoint Inhibitors and Cardiac Toxicity: An Emerging Issue. Curr. Med. Chem. 2018, 25, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, Y.; Kawai, S.; Ota, T.; Tsukuda, H.; Fukuoka, M. Myasthenia gravis induced by nivolumab in patients with non-small-cell lung cancer: A case report and literature review. Immunotherapy 2017, 9, 701–707. [Google Scholar] [CrossRef]
- Nakanishi, S.; Nishida, S.; Miyazato, M.; Goya, M.; Saito, S. A case report of nivolumab-induced myasthenia gravis and myositis in a metastatic renal cell carcinoma patient. Urol. Case Rep. 2020, 29, 101105. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Takagi, T.; Kondo, T.; Homma, C.; Tachibana, H.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Kobayashi, H.; Okumi, M.; et al. Association between immune-related adverse events and prognosis in patients with metastatic renal cell carcinoma treated with nivolumab. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 355.e321–355.e329. [Google Scholar] [CrossRef]
- Vitale, M.G.; Pipitone, S.; Venturelli, M.; Baldessari, C.; Porta, C.; Iannuzzi, F.; Basso, U.; Scagliarini, S.; Zucali, P.A.; Galli, L.; et al. Correlation Between Immune-related Adverse Event (IRAE) Occurrence and Clinical Outcome in Patients with Metastatic Renal Cell Carcinoma (mRCC) Treated with Nivolumab: IRAENE Trial, an Italian Multi-institutional Retrospective Study. Clin. Genitourin. Cancer 2020, 18, 477–488. [Google Scholar] [CrossRef]
- Pan, E.Y.; Merl, M.Y.; Lin, K. The impact of corticosteroid use during anti-PD1 treatment. J. Oncol. Pharm. Pract. 2020, 26, 814–822. [Google Scholar] [CrossRef]
- Numakura, K.; Horikawa, Y.; Kamada, S.; Koizumi, A.; Nara, T.; Chiba, S.; Kanda, S.; Saito, M.; Narita, S.; Inoue, T.; et al. Efficacy of anti-PD-1 antibody nivolumab in Japanese patients with metastatic renal cell carcinoma: A retrospective multicenter analysis. Mol. Clin. Oncol. 2019, 11, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numakura, K.; Kobayashi, M.; Hatakeyama, S.; Naito, S.; Horikawa, Y.; Tanaka, T.; Kamada, S.; Muto, Y.; Yamamoto, R.; Koizumi, A.; et al. Efficacy and safety of nivolumab for renal cell carcinoma in patients over 75 years old from multiple Japanese institutes. Int. J. Clin. Oncol. 2020, 25, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Hinata, N.; Yonese, J.; Masui, S.; Nakai, Y.; Shirotake, S.; Tatsugami, K.; Inamoto, T.; Nozawa, M.; Ueda, K.; Etsunaga, T.; et al. A multicenter retrospective study of nivolumab monotherapy in previously treated metastatic renal cell carcinoma patients: Interim analysis of Japanese real-world data. Int. J. Clin. Oncol. 2020, 25, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Prokunina, L.; Castillejo-Lopez, C.; Oberg, F.; Gunnarsson, I.; Berg, L.; Magnusson, V.; Brookes, A.J.; Tentler, D.; Kristjansdottir, H.; Grondal, G.; et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet. 2002, 32, 666–669. [Google Scholar] [CrossRef]
- de With, M.; Hurkmans, D.P.; Oomen-de Hoop, E.; Lalouti, A.; Bins, S.; El Bouazzaoui, S.; van Brakel, M.; Debets, R.; Aerts, J.; van Schaik, R.H.N.; et al. Germline Variation in PDCD1 Is Associated with Overall Survival in Patients with Metastatic Melanoma Treated with Anti-PD-1 Monotherapy. Cancers 2021, 13, 1370. [Google Scholar] [CrossRef]
- Nomizo, T.; Ozasa, H.; Tsuji, T.; Funazo, T.; Yasuda, Y.; Yoshida, H.; Yagi, Y.; Sakamori, Y.; Nagai, H.; Hirai, T.; et al. Clinical Impact of Single Nucleotide Polymorphism in PD-L1 on Response to Nivolumab for Advanced Non-Small-Cell Lung Cancer Patients. Sci. Rep. 2017, 7, 45124. [Google Scholar] [CrossRef]
- Bins, S.; Basak, E.A.; El Bouazzaoui, S.; Koolen, S.L.W.; Oomen-de Hoop, E.; van der Leest, C.H.; van der Veldt, A.A.M.; Sleijfer, S.; Debets, R.; van Schaik, R.H.N.; et al. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients. Br. J. Cancer 2018, 118, 1296–1301. [Google Scholar] [CrossRef] [Green Version]
- Salmaninejad, A.; Khoramshahi, V.; Azani, A.; Soltaninejad, E.; Aslani, S.; Zamani, M.R.; Zal, M.; Nesaei, A.; Hosseini, S.M. PD-1 and cancer: Molecular mechanisms and polymorphisms. Immunogenetics 2018, 70, 73–86. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Deng, C.; Li, J.; Wen, X.; Wu, Z.; Hu, C.; Zhang, S.; Li, P.; Zhang, X.; et al. The associations between PD-1, CTLA-4 gene polymorphisms and susceptibility to ankylosing spondylitis: A meta-analysis and systemic review. Rheumatol. Int. 2016, 36, 33–44. [Google Scholar] [CrossRef]
- Fujisawa, R.; Haseda, F.; Tsutsumi, C.; Hiromine, Y.; Noso, S.; Kawabata, Y.; Mitsui, S.; Terasaki, J.; Ikegami, H.; Imagawa, A.; et al. Low programmed cell death-1 (PD-1) expression in peripheral CD4+ T cells in Japanese patients with autoimmune type 1 diabetes. Clin. Exp. Immunol. 2015, 180, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Li, N.; Li, Z.; Zhu, Q.; Li, F.; Yang, C.; Han, Q.; Lv, Y.; Zhou, Z.; Liu, Z. microRNA-4717 differentially interacts with its polymorphic target in the PD1 3′ untranslated region: A mechanism for regulating PD-1 expression and function in HBV-associated liver diseases. Oncotarget 2015, 6, 18933–18944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, N.; Li, F.; Zhou, Z.; Sang, J.; Chen, Y.; Han, Q.; Lv, Y.; Liu, Z. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine 2016, 95, e5749. [Google Scholar] [CrossRef]
- Mori, M.; Yamada, R.; Kobayashi, K.; Kawaida, R.; Yamamoto, K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 2005, 50, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Direskeneli, H.; Tuna-Erdogan, E.; Gunduz, F.; Bandurska-Luque, A.; Alparslan, B.; Kebe, M.; Uyar, F.A.; Bicakcigil, M.; Aksu, K.; Kamali, S.; et al. PDCD1 polymorphisms are not associated with Takayasu’s arteritis in Turkey. Clin. Exp. Rheumatol. 2012, 30, S11–S14. [Google Scholar] [PubMed]
- Pignon, J.C.; Jegede, O.; Shukla, S.A.; Braun, D.A.; Horak, C.E.; Wind-Rotolo, M.; Ishii, Y.; Catalano, P.J.; Grosha, J.; Flaifel, A.; et al. irRECIST for the Evaluation of Candidate Biomarkers of Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma: Analysis of a Phase II Prospective Clinical Trial. Clin. Cancer Res. 2019, 25, 2174–2184. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.; Han, G.; Schalper, K.A.; Carvajal-Hausdorf, D.; Pelekanou, V.; Rehman, J.; Velcheti, V.; Herbst, R.; LoRusso, P.; Rimm, D.L. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non-Small-Cell Lung Cancer. JAMA Oncol. 2016, 2, 46–54. [Google Scholar] [CrossRef]
- Yuasa, T.; Masuda, H.; Yamamoto, S.; Numao, N.; Yonese, J. Biomarkers to predict prognosis and response to checkpoint inhibitors. Int. J. Clin. Oncol. 2017, 22, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Khan, Y.; Slattery, T.D.; Pickering, L.M. Individualizing Systemic Therapies in First Line Treatment and beyond for Advanced Renal Cell Carcinoma. Cancers 2020, 12, 3750. [Google Scholar] [CrossRef]
- Wagner, M.; Tupikowski, K.; Jasek, M.; Tomkiewicz, A.; Witkowicz, A.; Ptaszkowski, K.; Karpinski, P.; Zdrojowy, R.; Halon, A.; Karabon, L. SNP-SNP Interaction in Genes Encoding PD-1/PD-L1 Axis as a Potential Risk Factor for Clear Cell Renal Cell Carcinoma. Cancers 2020, 12, 3521. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2018, 18, 153–167. [Google Scholar] [CrossRef]
- Wagner, M.; Jasek, M.; Karabon, L. Immune Checkpoint Molecules-Inherited Variations as Markers for Cancer Risk. Front. Immunol. 2020, 11, 606721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, Z.; Duan, S.; Han, Q.; Li, Z.; Lv, Y.; Chen, J.; Lou, S.; Li, N. Association of polymorphisms of programmed cell death-1 gene with chronic hepatitis B virus infection. Hum. Immunol. 2010, 71, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Eldafashi, N.; Darlay, R.; Shukla, R.; McCain, M.V.; Watson, R.; Liu, Y.L.; McStraw, N.; Fathy, M.; Fawzy, M.A.; Zaki, M.Y.W.; et al. A PDCD1 Role in the Genetic Predisposition to NAFLD-HCC? Cancers 2021, 13, 1412. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, A.; Di Fonte, R.; Gerosa, J.; Jofra, T.; Cicalese, M.P.; Napoleone, V.; Ippolito, E.; Galvani, G.; Ragogna, F.; Stabilini, A.; et al. Reduced PD-1 expression on circulating follicular and conventional FOXP3+ Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clin. Immunol. 2020, 211, 108319. [Google Scholar] [CrossRef] [PubMed]
Number of Patients 106 (100%) | |||
Gender (%) | Number of metastatic sites | ||
Male | 85 (80) | 1 | 29 (27) |
Female | 21 (20) | 2 | 39 (37) |
Age (year) | ≥3 | 38 (36) | |
Median | 69 | Site of metastasis and recurrence | |
IQR | 62–74 | Lung | 79 (75) |
Histology (%) | Primary site | 37 (35) | |
Clear cell | 100 (94) | Bone | 36 (34) |
Others | 6 (6) | Lymph node | 30 (28) |
Prior nephrectomy (%) | Adrenal | 15 (14) | |
Yes | 64 (60) | Liver | 14 (13) |
Agent (%) | Brain | 10 (9) | |
Nivolumab | 59 (56) | Contralateral kidney | 6 (6) |
Ipilimumab + Nivolumab | 47 (44) | Others | 27 (25) |
Observational period (months) | IMDC risk classification | ||
Median | 18.8 | Favorable | 15 (14) |
IQR | 6.3–33.9 | Intermediate | 47 (44) |
Treatment duration (months) | Poor | 42 (40) | |
Median | 5.0 | Unclassified | 2 (2) |
Range | 2.7–17.4 | Best response | |
Number of prior systemic therapy (%) | CR | 8 (8) | |
0 | 47 (44) | PR | 30 (28) |
1 | 27 (26) | SD | 39 (37) |
≥2 | 15 (14) | PD | 26 (24) |
unknown | 17 (16) | Unknown | 3 (3) |
Clinical stage at diagnosis of RCC (%) | Reason for nivolumab discontinuation | ||
1 | 14 (13) | PD | 45 (36) |
2 | 6 (6) | AE | 14 (13) |
3 | 15 (14) | Still continue | 26 (26) |
4 | 55 (52) | Suspension | 5 (24) |
unknown | 16 (15) | Other reasons | 16 (15) |
irAE Grade 2 or higher | |||
53 (50) | |||
Multiple irAEs | |||
26 (25) |
Gene | RS | Position | Genotype | Number of Patients | Risk Genotype | Progression-Free Survival (Months) | Overall Survival (Months) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | ||||||
PDCD1 | rs2227981 | PD-1.5 | CC | 51 | T allele | 0.639 | 0.352–1.159 | 0.140 | 0.973 | 0.507–1.883 | 0.945 |
C > T | CT | 53 | |||||||||
TT | 2 | ||||||||||
rs10204525 | PD-1.6 | GG | 11 | G allele | 1.179 | 0.878–1.583 | 0.274 | 1.147 | 0.823–1.599 | 0.417 | |
G > A | GA | 38 | |||||||||
AA | 57 |
Factor | Risk Category | Clinical Benefit | ORR | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
Age | 69≦ | 1.330 | 0.544–3.252 | 0.532 | 0.706 | 0.316–1.575 | 0.395 |
Sex | Male | 1.508 | 0.457–4.971 | 0.500 | 0.650 | 0.229–1.847 | 0.419 |
Nephrectomy | Yes | 1.033 | 0.416–2.567 | 0.944 | 1.450 | 0.644–3.265 | 0.369 |
Regimen | Nivo + Ipi | 0.571 | 0.227–1.434 | 0.233 | 0.608 | 0.272–1.355 | 0.233 |
Clinical stage | 3≦ | 1.520 | 0.450–5.130 | 0.500 | 1.440 | 0.525–3948 | 0.479 |
4 | 1.684 | 0.611–4.640 | 0.313 | 0.929 | 0.386–2.232 | 0.868 | |
IMDC | Poor | 1.655 | 0.675–4.056 | 0.271 | 1.297 | 0.570–2.951 | 0.379 |
Intermediate + Poor | 5.556 | 0.693–44.513 | 0.106 | 0.578 | 0.170–1.960 | 0.695 | |
Number of Metastatic Organ | 2≦ | 3.761 | 1.034–13.682 | 0.044 | 0.902 | 0.368–2.211 | 0.822 |
3≦ | 2.841 | 1.142–7.065 | 0.025 | 1.290 | 0.554–3.001 | 0.555 | |
irAE | G2≦ | 0.551 | 0.223–1.361 | 0.196 | 0.498 | 0.221–1.119 | 0.091 |
G3≦ | 0.766 | 0.296–1.982 | 0.583 | 0.750 | 0.328–1.713 | 0.494 | |
multiple | 1.931 | 0.732–5.093 | 0.184 | 1.096 | 0.140–4.129 | 0.750 | |
PDCD1 SNP | PD-1.5 T allele | 0.755 | 0.310–1.836 | 0.536 | 0.562 | 0.250–1.261 | 0.162 |
PD-1.6 G allele | 0.791 | 0.323–1.935 | 0.608 | 1.335 | 0.598–2.978 | 0.481 |
Factor | Risk Category | At Least One irAE ≥ G2 | Multiple irAEs | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
Age | 69≦ | 0.764 | 0.354–1.646 | 0.491 | 1.135 | 0.468–2.755 | 0.779 |
Sex | Male | 0.909 | 0.349–2.368 | 0.845 | 0.442 | 0.119–1.643 | 0.223 |
Nephrectomy | Yes | 0.952 | 0.435–2.986 | 0.903 | 2.780 | 1.120–6.896 | 0.027 |
Regimen | Nivo + Ipi | 0.561 | 0.258–1.221 | 0.145 | 3.879 | 1.500–10.033 | 0.005 |
Clinical stage | 3≦ | 3.469 | 1.135–10.602 | 0.029 | 0.817 | 0.262–2.548 | 0.727 |
4 | 0.824 | 0.375–1.810 | 0.629 | 1.040 | 0.404–2.675 | 0.935 | |
IMDC | Poor | 0.824 | 0.375–1.810 | 0.629 | 1.138 | 0.458–2.829 | 0.781 |
Intermediate + Poor | 0.457 | 0.144–1.445 | 0.187 | 0.180 | 0.022–1.442 | 0.106 | |
Number of Metastatic Organ | 2≦ | 1.160 | 0.698–3.944 | 0.251 | 0.730 | 0.260–2.953 | 0.551 |
3≦ | 0.893 | 0.401–1.990 | 0.782 | 0.540 | 0.218–1.335 | 0.182 | |
PDCD1 SNP | PD-1.5 T allele | 0.708 | 0.328–1.527 | 0.379 | 1.324 | 0.545–3.221 | 0.536 |
PD-1.6 G allele | 3.390 | 1.517–7.576 | 0.003 | 2.778 | 1.020–6.993 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, M.; Numakura, K.; Hatakeyama, S.; Muto, Y.; Sekine, Y.; Sasagawa, H.; Kashima, S.; Yamamoto, R.; Koizumi, A.; Nara, T.; et al. Severe Immune-Related Adverse Events in Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma Are Associated with PDCD1 Polymorphism. Genes 2022, 13, 1204. https://doi.org/10.3390/genes13071204
Kobayashi M, Numakura K, Hatakeyama S, Muto Y, Sekine Y, Sasagawa H, Kashima S, Yamamoto R, Koizumi A, Nara T, et al. Severe Immune-Related Adverse Events in Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma Are Associated with PDCD1 Polymorphism. Genes. 2022; 13(7):1204. https://doi.org/10.3390/genes13071204
Chicago/Turabian StyleKobayashi, Mizuki, Kazuyuki Numakura, Shingo Hatakeyama, Yumina Muto, Yuya Sekine, Hajime Sasagawa, Soki Kashima, Ryohei Yamamoto, Atsushi Koizumi, Taketoshi Nara, and et al. 2022. "Severe Immune-Related Adverse Events in Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma Are Associated with PDCD1 Polymorphism" Genes 13, no. 7: 1204. https://doi.org/10.3390/genes13071204
APA StyleKobayashi, M., Numakura, K., Hatakeyama, S., Muto, Y., Sekine, Y., Sasagawa, H., Kashima, S., Yamamoto, R., Koizumi, A., Nara, T., Saito, M., Narita, S., Ohyama, C., & Habuchi, T. (2022). Severe Immune-Related Adverse Events in Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma Are Associated with PDCD1 Polymorphism. Genes, 13(7), 1204. https://doi.org/10.3390/genes13071204