Novel Gene Rearrangements in the Mitochondrial Genomes of Cynipoid Wasps (Hymenoptera: Cynipoidea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Identification and DNA Extraction
2.2. Next-Generation Sequencing and Assembly
2.3. Mitochondrial Genome Annotation and Analysis
2.4. Phylogenetic Analysis
3. Results and Discussion
3.1. General Features of Mitochondrial Genomes
3.2. Base Composition, Codon Usage, and Evolutionary Rate
3.3. Gene Rearrangements
3.4. Phylogenetic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronquist, F. Phylogeny, classification and evolution of the Cynipoidea. Zool. Scr. 1999, 28, 139–164. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.T. Biodiversity of Hymenoptera. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; Wiley-Blackwell: Oxford, UK, 2017; pp. 419–461. [Google Scholar]
- Buffington, M.L.; Forshage, M.; Liljeblad, J.; Tang, C.T.; van Noort, S. World Cynipoidea (Hymenoptera): A key to higher-level groups. Insect Syst. Divers. 2020, 4, 1. [Google Scholar] [CrossRef]
- Blaimer, B.B.; Gotzek, D.; Brady, S.G.; Buffington, M.L. Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Evol. Biol. 2020, 20, 155. [Google Scholar] [CrossRef]
- Egan, S.P.; Hood, G.R.; Martinson, E.O.; Ott, J.R. Cynipid gall wasps. Curr. Biol. 2018, 28, R1370–R1374. [Google Scholar] [CrossRef] [Green Version]
- Buffington, M.L.; Nylander, J.A.A.; Heraty, J.M. The phylogeny and evolution of Figitidae (Hymenoptera: Cynipoidea). Cladistics 2007, 23, 403–431. [Google Scholar] [CrossRef]
- Ronquist, F.; Nieves-Aldrey, J.-L.; Buffington, M.L.; Liu, Z.; Liljeblad, J.; Nylander, J.A.A. Phylogeny, evolution and classification of gall wasps: The plot thickens. PLoS ONE 2015, 10, e0123301. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Dowton, M.; Castro, L.R.; Austin, A.D. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: The examination of genome ‘morphology’. Invertebr. Syst. 2002, 16, 345–356. [Google Scholar] [CrossRef]
- Castro, L.R.; Dowton, M. Mitochondrial genomes in the Hymenoptera and their utility as phylogenetic markers. Syst. Entomol. 2007, 32, 60–69. [Google Scholar] [CrossRef]
- Dowton, M.; Austin, A.D. Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the hymenoptera. Mol. Biol. Evol. 1999, 16, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.J.; Shi, M.; Sharkey, M.J.; van Achterberg, C.; Chen, X.X. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genom. 2010, 11, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wei, S.J.; Tang, P.; Wu, Q.; Shi, M.; Sharkey, M.J.; Chen, X.X. Multiple lines of evidence from mitochondrial genomes resolve phylogenetic relationships of parasitic wasps in Braconidae. Genome Biol. Evol. 2016, 8, 2651–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.Y.; Cao, L.J.; Chen, P.Y.; Chen, X.X.; van Achterberg, K.; Hoffmann, A.A.; Liu, J.X.; Wei, S.J. Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Mol. Phylogenet. Evol. 2021, 159, 107119. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.T.P.; Moore, W.; Melchior, L.; Worobey, M. DNA extraction from dry museum beetles without conferring external morphological damage. PLoS ONE 2007, 2, e272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzold, F.; Zilli, A.; Hundsdoerfer, A.K. Advantages of an easy-to-use DNA extraction method for minimal-destructive analysis of collection specimens. PLoS ONE 2020, 15, e0235222. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC. Available online: https://qubeshub.org/resources/fastqc (accessed on 8 January 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Zhu, J.C.; Zheng, B.Y.; Wei, S.J.; Sharkey, M.; Chen, X.X.; Vogler, A.P. Mitochondrial phylogenomics of the Hymenoptera. Mol. Phylogenet. Evol. 2019, 131, 8–18. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Son, P.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Bernt, M.; Donath, A.; Juehling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Puetz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Carlos Sanchez-DelBarrio, J.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Kruitwagen, A.; Wertheim, B.; Beukeboom, L.W. Artificial selection for nonreproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii. Evol. Appl. 2021, 14, 1993–2011. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Oliveira, D.C.S.G.; Raychoudhury, R.; Lavrov, D.V.; Werren, J.H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 2008, 25, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.C.; Tang, P.; Zheng, B.Y.; Wu, Q.; Wei, S.J.; Chen, X.X. The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. Int. J. Biol. Macromol. 2018, 118, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zheng, B.Y.; Zhu, J.C.; van Achterberg, C.; Tang, P.; Chen, X.X. The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphyta): Novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. Int. J. Biol. Macromol. 2019, 123, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.Y.; Cao, L.J.; Tang, P.; van Achterberg, K.; Hoffmann, A.A.; Chen, H.Y.; Chen, X.X.; Wei, S.J. Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea). Mol. Phylogenet. Evol. 2018, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.Y.; Han, Y.Y.; Yuan, R.Z.; Liu, J.X.; Tang, P.; van Achterberg, C.; Chen, X.X. Mitochondrial genomes yield insights into the basal lineages of Ichneumonid wasps (Hymenoptera: Ichneumonidae). Genes 2022, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.C.; Fan, Q.; Tian, Y.; Wang, F.; Chen, X.X.; Werren, J.H.; Ye, G.Y. Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea. Int. J. Biol. Macromol. 2019, 121, 572–579. [Google Scholar] [CrossRef]
Family | Subfamily | Species | Accession Number |
---|---|---|---|
Figitidae | Anacharitinae | Anacharis sp. | OM677820 * |
Figitidae | Anacharitinae | Aegilips sp. | OM677821 * |
Figitidae | Aspicerinae | Melanips sp. | OM677822 * |
Figitidae | Aspicerinae | Prosaspicera validispina | OM677823 * |
Figitidae | Aspicerinae | Pujadella villari | OM677824 * |
Figitidae | Parnipinae | Parnips nigripes | OM677835 * |
Figitidae | Eucoilinae | Gastraspis sp. | MG923497 |
Figitidae | Eucoilinae | Endecameris sp. | OM677825 * |
Figitidae | Eucoilinae | Ganaspini sp. | OM677826 * |
Figitidae | Eucoilinae | Trybliographa sp. | OM677827 * |
Figitidae | Figitinae | Figites sp. 1 | OM677828 * |
Figitidae | Figitinae | Figites sp. 2 | OM677829 * |
Ibaliidae | Ibalia leucospoides | KJ814197 | |
Ibaliidae | Ibalia sp. | OM677830 * | |
Liopteridae | Paramblynotus sp. | OM677831 * | |
Liopteridae | Oberthuerella sharkeyi | OM677832 * | |
Liopteridae | Tessmannella kiplingi | OM677833 * | |
Cynipidae | Trichagalma acutissimae | MN928529 | |
Cynipidae | Synergus sp. | MG923514 | |
Cynipidae | Saphonecrus sp. | OM677834 * | |
outgroup | |||
Platygastridae | Platygaster sp. | MG923507 | |
Platygastridae | Trissolcus basalis | JN903532 |
Species | Whole Genome | Protein-Coding Genes | ||||
---|---|---|---|---|---|---|
Length (bp) | A + T (%) | Length (bp) | A + T (%) | AT-Skew | GC-Skew | |
Anacharis sp. | 18,513 | 80.57 | 11,381 | 78.67 | −0.0560 | −0.1112 |
Aegilips sp. | 16,709 | 84.00 | 11,080 | 81.75 | −0.0832 | −0.0722 |
Melanips sp. | 16,103 | 85.52 | 11,186 | 83.67 | −0.1121 | 0.0323 |
Pr. validispina | 15,938 | 84.27 | 11,136 | 82.88 | −0.1075 | 0.0336 |
Pu. villari | 16,650 | 79.51 | 11,148 | 76.81 | −0.1241 | 0.0662 |
Endecameris sp. | 16,234 | 84.95 | 11,133 | 83.26 | −0.0946 | −0.0687 |
Ganaspini sp. | 17,078 | 82.62 | 11,183 | 80.81 | −0.0891 | −0.0596 |
Trybliographa sp. | 16,034 | 79.36 | 11,123 | 76.91 | −0.0878 | −0.1340 |
Figites sp. 1 | 15,333 | 84.24 | 10,986 | 82.90 | −0.0930 | 0.0495 |
Figites sp. 2 | 16,775 | 83.09 | 11,145 | 81.31 | −0.0984 | 0.0302 |
Ibalia sp. | 17,176 | 86.40 | 11,069 | 85.66 | −0.1175 | 0.0422 |
Paramblynotus sp. | 15,482 | 87.02 | 11,173 | 85.58 | −0.1127 | 0.0130 |
O. sharkeyi | 16,053 | 84.04 | 11,199 | 82.58 | −0.1060 | −0.0169 |
Te. kiplingi | 15,724 | 83.41 | 11,154 | 81.12 | −0.1021 | −0.0028 |
Saphonecrus sp. | 16,482 | 85.36 | 11,271 | 82.97 | −0.1049 | 0.0083 |
Pa. nigripes | 16,876 | 84.46 | 11,168 | 83.82 | −0.1114 | 0.0515 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, X.; Li, Z.; Yuan, R.; Tang, P.; Chen, X. Novel Gene Rearrangements in the Mitochondrial Genomes of Cynipoid Wasps (Hymenoptera: Cynipoidea). Genes 2022, 13, 914. https://doi.org/10.3390/genes13050914
Shu X, Li Z, Yuan R, Tang P, Chen X. Novel Gene Rearrangements in the Mitochondrial Genomes of Cynipoid Wasps (Hymenoptera: Cynipoidea). Genes. 2022; 13(5):914. https://doi.org/10.3390/genes13050914
Chicago/Turabian StyleShu, Xiaohan, Zekai Li, Ruizhong Yuan, Pu Tang, and Xuexin Chen. 2022. "Novel Gene Rearrangements in the Mitochondrial Genomes of Cynipoid Wasps (Hymenoptera: Cynipoidea)" Genes 13, no. 5: 914. https://doi.org/10.3390/genes13050914
APA StyleShu, X., Li, Z., Yuan, R., Tang, P., & Chen, X. (2022). Novel Gene Rearrangements in the Mitochondrial Genomes of Cynipoid Wasps (Hymenoptera: Cynipoidea). Genes, 13(5), 914. https://doi.org/10.3390/genes13050914