Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. MS Patients
2.2. IL-6 SNPs Analysis
2.3. CSF Collection and Analysis
2.4. MRI
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics in MS Patients
3.2. Analysis of IL-6 SNP
3.3. Association between CSF Inflammation and IL-6 SNPs
3.4. rs1818879 Influences Radiological Activity in RRMS Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Göbel, K.; Ruck, T.; Meuth, S.G. Cytokine signaling in multiple sclerosis: Lost in translation. Mult. Scler. J. 2018, 24, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Codarri, L.; Fontana, A.; Becher, B. Cytokine networks in multiple sclerosis: Lost in translation. Curr. Opin. Neurol. 2010, 23, 205–211. [Google Scholar] [CrossRef]
- Yadav, S.K.; Mindur, J.E.; Ito, K.; Dhib-Jalbut, S. Advances in the immunopathogenesis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Becher, B.; Spath, S.; Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017, 17, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Stampanoni Bassi, M.; Iezzi, E.; Mori, F.; Simonelli, I.; Gilio, L.; Buttari, F.; Sica, F.; De Paolis, N.; Mandolesi, G.; Musella, A.; et al. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabil. Neural Repair 2019, 33, 825–835. [Google Scholar] [CrossRef]
- Stampanoni Bassi, M.; Iezzi, E.; Drulovic, J.; Pekmezovic, T.; Gilio, L.; Furlan, R.; Finardi, A.; Marfia, G.A.; Sica, F.; Centonze, D.; et al. IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Front. Cell. Neurosci. 2020, 14, 120. [Google Scholar] [CrossRef]
- Kleiter, I.; Ayzenberg, I.; Araki, M.; Yamamura, T.; Gold, R. Tocilizumab, MS, and NMOSD. Mult. Scler. J. 2016, 22, 1891–1892. [Google Scholar] [CrossRef]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta-Mol. Cell Res. 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Mirowska-Guzel, D.; Gromadzka, G.; Mach, A.; Czlonkowski, A.; Czlonkowska, A. Association of IL1A, IL1B, ILRN, IL6, IL10 and TNF-α polymorphisms with risk and clinical course of multiple sclerosis in a Polish population. J. Neuroimmunol. 2011, 236, 87–92. [Google Scholar] [CrossRef]
- Benešová, Y.; Vašků, A.; Bienertová-Vašků, J. Association of interleukin 6, interleukin 7 receptor alpha, and interleukin 12B gene polymorphisms with multiple sclerosis. Acta Neurol. Belg. 2018, 118, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Helmy, A.; Antoniades, C.A.; Guilfoyle, M.R.; Carpenter, K.L.H.; Hutchinson, P.J. Principal Component Analysis of the Cytokine and Chemokine Response to Human Traumatic Brain Injury. PLoS ONE 2012, 7, e39677. [Google Scholar] [CrossRef]
- Musella, A.; Fresegna, D.; Rizzo, F.R.; Gentile, A.; De Vito, F.; Caioli, S.; Guadalupi, L.; Bruno, A.; Dolcetti, E.; Buttari, F.; et al. ‘Prototypical’ proinflammatory cytokine (IL-1) in multiple sclerosis: Role in pathogenesis and therapeutic targeting. Expert Opin. Ther. Targets 2020, 24, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Mandolesi, G.; Gentile, A.; Musella, A.; Fresegna, D.; De Vito, F.; Bullitta, S.; Sepman, H.; Marfia, G.A.; Centonze, D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat. Rev. Neurol. 2015, 11, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Studer, V.; Motta, C.; Germani, G.; Macchiarulo, G.; Buttari, F.; Mancino, R.; Castelli, M.; De Chiara, V.; Weiss, S.; et al. Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis. J. Neuroinflamm. 2014, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Ruocco, G.; Rossi, S.; Motta, C.; Macchiarulo, G.; Barbieri, F.; De Bardi, M.; Borsellino, G.; Finardi, A.; Grasso, M.G.; Ruggieri, S.; et al. T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17 in multiple sclerosis. Clin. Sci. 2015, 129, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Donninelli, G.; Studer, V.; Brambilla, L.; Zecca, C.; Peluso, D.; Laroni, A.; Michelis, D.; Mantegazza, R.; Confalonieri, P.; Volpe, E. Immune Soluble Factors in the Cerebrospinal Fluid of Progressive Multiple Sclerosis Patients Segregate into Two Groups. Front. Immunol. 2021, 12, 633167. [Google Scholar] [CrossRef]
- Sedeeq, M.S.; El-Nahrery, E.M.A.; Shalaby, N.; Hussein, M.; Shehata, H.; El Aal, R.A.; Abdel Ghaffar, N.F.; Mohamed, M.M. Micro-RNA-96 and interleukin-10 are independent biomarkers for multiple sclerosis activity. J. Neurol. Sci. 2019, 403, 92–96. [Google Scholar] [CrossRef]
- Rossi, S.; Mancino, R.; Bergami, A.; Mori, F.; Castelli, M.; De Chiara, V.; Studer, V.; Mataluni, G.; Sancesario, G.; Parisi, V.; et al. Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Mult. Scler. J. 2011, 17, 1301–1312. [Google Scholar] [CrossRef]
- Elyaman, W.; Khoury, S.J. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin. Immunopathol. 2017, 39, 79–87. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Lin, C.Y.; Csurhes, P.A.; Pender, M.P.; McCombe, P.A.; Greer, J.M. Interleukin-6 Gene Promoter-572 C Allele May Play a Role in Rate of Disease Progression in Multiple Sclerosis. Int. J. Mol. Sci. 2012, 13, 13667–13679. [Google Scholar] [CrossRef] [Green Version]
- Stonys, V.; Lindžiūtė, M.; Vilkevičiūtė, A.; Gedvilaitė, G.; Kriaučiūnienė, L.; Banevičius, M.; Žemaitienė, R.; Liutkevičienė, R. Associations between IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 gene polymorphisms and development of optic neuritis with or without multiple sclerosis. Ophthalmic Genet. 2020, 41, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Gedvilaite, G.; Vilkeviciute, A.; Kriauciuniene, L.; Asmoniene, V.; Liutkeviciene, R. Does CETP rs5882, rs708272, SIRT1 rs12778366, FGFR2 rs2981582, STAT3 rs744166, VEGFA rs833068, IL6 rs1800795 polymorphisms play a role in optic neuritis development? Ophthalmic Genet. 2019, 40, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, D.; Serana, F.; Sottini, A.; Cordioli, C.; Maimone, D.; Amato, M.P.; Centonze, D.; Florio, C.; Puma, E.; Capra, R.; et al. Less Frequent and Less Severe Flu-Like Syndrome in Interferon β-1a Treated Multiple Sclerosis Patients with at Least One Allele Bearing the G > C Polymorphism at Position -174 of the IL-6 Promoter Gene. PLoS ONE 2015, 10, e0135441. [Google Scholar] [CrossRef]
- Hu, S.; Chen, Y.; Sun, X.-D.; Li, F.-J.; Shu, Q.-F.; Liu, X.-L.; Jiang, S.-F. Association between IL-6 -174G/C Polymorphism and Risk of Multiple Sclerosis: A Meta-Analysis. Genet. Test. Mol. Biomark. 2014, 18, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Amirzargar, A.; Khosravi, F.; Dianat, S.; Hushmand, F.; Maryousef, P.; Foroushani, A.; Lotfi, J.; Nikbin, B. Profile of cytokine gene polymorphisms in Iranian multiple sclerosis patients. Mult. Scler. J. 2007, 13, 253–255. [Google Scholar] [CrossRef]
- Paradowska-Gorycka, A.; Roszak, M.; Stypinska, B.; Lutkowska, A.; Walczyk, M.; Olesinska, M.; Wajda, A.; Piotrowski, P.; Puszczewicz, M.; Majewski, D.; et al. IL-6 and TGF-β gene polymorphisms, their serum levels, as well as HLA profile, in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 2019, 37, 963–975. [Google Scholar]
- Dar, S.A.; Haque, S.; Mandal, R.K.; Singh, T.; Wahid, M.; Jawed, A.; Panda, A.K.; Akhter, N.; Lohani, M.; Areeshi, M.Y.; et al. Interleukin-6-174G > C (rs1800795) polymorphism distribution and its association with rheumatoid arthritis: A case-control study and meta-analysis. Autoimmunity 2017, 50, 158–169. [Google Scholar] [CrossRef]
- Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Abarca-Rojano, E.; Montaño, M.; Ramos, C.; Hernández-Zenteno, R.D.J.; Del Angel-Pablo, A.D.; Reséndiz-Hernández, J.M.; Ramírez-Venegas, A.; Falfán-Valencia, R. Influence of proinflammatory cytokine gene polymorphisms on the risk of COPD and the levels of plasma protein. Cytokine 2018, 111, 364–370. [Google Scholar] [CrossRef]
- Cohen-Woods, S.; Fisher, H.L.; Ahmetspahic, D.; Douroudis, K.; Stacey, D.; Hosang, G.M.; Korszun, A.; Owen, M.; Craddock, N.; Arolt, V.; et al. Interaction between childhood maltreatment on immunogenetic risk in depression: Discovery and replication in clinical case-control samples. Brain. Behav. Immun. 2018, 67, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kaboré, J.W.; Ilboudo, H.; Noyes, H.; Camara, O.; Kaboré, J.; Camara, M.; Koffi, M.; Lejon, V.; Jamonneau, V.; MacLeod, A.; et al. Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea. PLoS Negl. Trop. Dis. 2017, 11, e0005833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Yu, N.-K.; Kaang, B.-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp. Mol. Med. 2015, 47, e166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampanoni Bassi, M.; Gilio, L.; Maffei, P.; Dolcetti, E.; Bruno, A.; Buttari, F.; Centonze, D.; Iezzi, E. Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Front. Mol. Neurosci. 2018, 11, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MS Patients n = 171 | ||
---|---|---|
Sex, F | N (%) | 113 (66.10) |
Age, years | Mean, (SD) | 35.78 (12.27) |
Disease duration, months | Median, (IQR) | 5.10 (1.05–24.89) |
EDSS at diagnosis | Median, (IQR) | 2 (1–2.5) |
OCB presence, yes | N (%) | 132/166 (79.50) |
Radiological activity at diagnosis | N (%) | 74/166 (44.60) |
Clinical activity at diagnosis | N (%) | 68 (39.76) |
SNP | SNP Distribution | Allele Frequency (%) | Chi-Square | Group Analysis (n) |
---|---|---|---|---|
rs1818879 | GG (n = 88; 51.46%) AG (n = 79; 46.19%) AA (n = 4; 2.33%) | G = 75.44 A = 24.55 | p = 0.917 | GG (88) AG/AA (83) |
rs1554606 | GG (n = 78; 70.38%) TG (n = 46; 32.11%) TT (n = 11; 6.58%) | G = 74.81 T = 25.18 | p = 0.842 | GG (78) TG/TT (57) |
rs1800797 | GG (n = 86; 50.58%) AG (n = 74; 41.17%) AA (n = 10; 5.88%) | G = 72.35 A = 27.64 | p = 0.886 | GG (86) AG/AA (84) |
rs1474347 | AA (n = 84; 49.70%) CA (n = 75; 44.37%) CC (n = 10; 5.91%) | A = 71.81 C = 28.19 | p = 0.870 | AA (84) CA/CC (85) |
GG | AG/AA | p Value | β-Coefficient | SE | |
---|---|---|---|---|---|
IL-1β | 0.01 (0.01–0.05) | 0.025 (0.00–0.07) | p = 0. 0385 * | 7.00 | 3.38 |
IL-4 | 0.08 (0.01–0.15) | 0.08 (0.00–0.22) | p = 0.104 | 1.25 | 0.770 |
IL-5 | 0.34 (0.00–2.16) | 1.15 (0.00–3.34) | p = 0.0543 | 0.142 | 0.0740 |
IL-7 | 0.41 (0.00–0.92) | 0.20 (0.00–1.41) | p = 0.0991 | 0.180 | 0.109 |
IL-9 | 1.86 (1.11–2.77) | 2.36 (1.45–5.44) | p = 0.0231 * | 0.105 | 0.0462 |
IL-10 | 1.78 (0.97–2.60) | 2.11 (1.27–2.70) | p = 0.0345 * | 0.278 | 0.132 |
IL-13 | 1.63 (1.04–3.32) | 2.06 (1.11–4.53) | p = 0.0319 * | 0.128 | 0.0597 |
G-CSF | 15.29 (4.41–25.92) | 16.51 (3.62–28.34) | p = 0.198 | 0.0131 | 0.0102 |
PDGF | 0.00 (0.00–0.37) | 0.00 (0.00–0.52) | p = 0.254 | 0.131 | 0.115 |
VEGF | 4.03 (0.00–13.97) | 5.79 (0.00–50.29) | p = 0.0715 | 0.00988 | 0.00548 |
GG n = 88 (51.46%) | AG/AA n = 83 (48.53%) | p Value | ||
---|---|---|---|---|
Sex, F | N (%) | 57 (64.80) | 56 (67.50) | p = 0.710 |
Age, years | Mean, (SD) | 37.20 (12.38) | 34.27 (12.04) | p = 0.111 |
Disease duration, months | Median (IQR) | 6.66 (1.3–26.13) | 3.1 (0.90–24.60) | p = 0.227 |
EDSS | Median (IQR) | 2 (1–2.5) | 2 (1–2.25) | p = 0.647 |
OCB presence, yes | N (%) | 70/87 (80.50) | 62/79 (78.50) | p = 0.752 |
Radiological activity at diagnosis | N (%) | 28/86 (32.60) | 46/80 (57.50) | p = 0.001 * |
Clinical activity at diagnosis | N (%) | 34 (38.63) | 34 (40.96) | p = 0.707 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, A.; Dolcetti, E.; Azzolini, F.; Moscatelli, A.; Gambardella, S.; Ferese, R.; Rizzo, F.R.; Gilio, L.; Iezzi, E.; Galifi, G.; et al. Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes 2022, 13, 897. https://doi.org/10.3390/genes13050897
Bruno A, Dolcetti E, Azzolini F, Moscatelli A, Gambardella S, Ferese R, Rizzo FR, Gilio L, Iezzi E, Galifi G, et al. Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes. 2022; 13(5):897. https://doi.org/10.3390/genes13050897
Chicago/Turabian StyleBruno, Antonio, Ettore Dolcetti, Federica Azzolini, Alessandro Moscatelli, Stefano Gambardella, Rosangela Ferese, Francesca Romana Rizzo, Luana Gilio, Ennio Iezzi, Giovanni Galifi, and et al. 2022. "Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis" Genes 13, no. 5: 897. https://doi.org/10.3390/genes13050897
APA StyleBruno, A., Dolcetti, E., Azzolini, F., Moscatelli, A., Gambardella, S., Ferese, R., Rizzo, F. R., Gilio, L., Iezzi, E., Galifi, G., Borrelli, A., Buttari, F., Furlan, R., Finardi, A., De Vito, F., Musella, A., Guadalupi, L., Mandolesi, G., Centonze, D., & Stampanoni Bassi, M. (2022). Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes, 13(5), 897. https://doi.org/10.3390/genes13050897