Association of SNP rs5069 in APOA1 with Benign Breast Diseases in a Mexican Population
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavarri-Guerra, Y.; Blazer, K.R.; Weitzel, J.N. Genetic Cancer Risk Assessment for Breast Cancer in Latin America. Rev. Investig. Clin. 2017, 69, 94–102. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Estadísticas a Propósito Del Día Mundial Contra El Cáncer. Datos Nacionales; Instituto Nacional de Estadística, Geografía e Informática: Mexico, 2021.
- Danilo, C.; Frank, P.G. Cholesterol and Breast Cancer Development. Curr. Opin. Pharmacol. 2012, 12, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Radišauskas, R.; Kuzmickienė, I.; Milinavičienė, E.; Everatt, R. Hypertension, Serum Lipids and Cancer Risk: A Review of Epidemiological Evidence. Medicina 2016, 52, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Chen, Y.; Borgard, H.; Jijiwa, M.; Nasu, M.; He, M.; Deng, Y. The Function and Mechanism of Lipid Molecules and Their Roles in The Diagnosis and Prognosis of Breast Cancer. Molecules 2020, 25, 4864. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and Cancer: Emerging Roles in Pathogenesis, Diagnosis and Therapeutic Intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [Google Scholar] [CrossRef]
- Yang, L.; Cui, X.; Zhang, N.; Li, M.; Bai, Y.; Han, X.; Shi, Y.; Liu, H. Comprehensive Lipid Profiling of Plasma in Patients with Benign Breast Tumor and Breast Cancer Reveals Novel Biomarkers. Anal. Bioanal. Chem. 2015, 407, 5065–5077. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Dai, M.; Ai, J.; Li, Y.; Mahon, B.; Dai, S.; Deng, Y. Plasma Lipidomics Profiling Identified Lipid Biomarkers in Distinguishing Early-Stage Breast Cancer from Benign Lesions. Oncotarget 2016, 7, 36622–36631. [Google Scholar] [CrossRef]
- Ren, L.; Yi, J.; Li, W.; Zheng, X.; Liu, J.; Wang, J.; Du, G. Apolipoproteins and Cancer. Cancer Med. 2019, 8, 7032–7043. [Google Scholar] [CrossRef]
- Borgquist, S.; Butt, T.; Almgren, P.; Shiffman, D.; Stocks, T.; Orho-Melander, M.; Manjer, J.; Melander, O. Apolipoproteins, Lipids and Risk of Cancer. Int. J. Cancer 2016, 138, 2648–2656. [Google Scholar] [CrossRef]
- Martin, L.J.; Melnichouk, O.; Huszti, E.; Connelly, P.W.; Greenberg, C.V.; Minkin, S.; Boyd, N.F. Serum Lipids, Lipoproteins, and Risk of Breast Cancer: A Nested Case-Control Study Using Multiple Time Points. J. Natl. Cancer Inst. 2015, 107, djv032. [Google Scholar] [CrossRef]
- His, M.; Zelek, L.; Deschasaux, M.; Pouchieu, C.; Kesse-Guyot, E.; Hercberg, S.; Galan, P.; Latino-Martel, P.; Blacher, J.; Touvier, M. Prospective Associations between Serum Biomarkers of Lipid Metabolism and Overall, Breast and Prostate Cancer Risk. Eur. J. Epidemiol. 2014, 29, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Fassier, P.; His, M.; Norat, T.; Chan, D.S.M.; Blacher, J.; Hercberg, S.; Galan, P.; Druesne-Pecollo, N.; Latino-Martel, P. Cholesterol and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Br. J. Nutr. 2015, 114, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Zamanian-Daryoush, M.; DiDonato, J.A. Apolipoprotein A-I and Cancer. Front. Pharmacol. 2015, 6, 265. [Google Scholar] [CrossRef] [PubMed]
- Chandler, P.D.; Song, Y.; Lin, J.; Zhang, S.; Sesso, H.D.; Mora, S.; Giovannucci, E.L.; Rexrode, K.E.; Moorthy, M.V.; Li, C.; et al. Lipid Biomarkers and Long-Term Risk of Cancer in the Womens Health Study. Am. J. Clin. Nutr. 2016, 103, 1397–1407. [Google Scholar] [CrossRef]
- Dyrstad, S.W.; Yan, Y.; Fowler, A.M.; Colditz, G.A. Breast Cancer Risk Associated with Benign Breast Disease: Systematic Review and Meta-Analysis. Breast Cancer Res. Treat. 2015, 149, 569–575. [Google Scholar] [CrossRef]
- Dixit, A.K.; Raza, M.A.; Sharan, J.; Chauhan, C.G.S.; Das, B.; Popat, A. Serum Lipid Profiles in Breast Carcinoma and Benign Breast Diseases in Rohilkhand Region of Uttar Pradesh. IJSS J. Surg. 2016, 2, 22–29. [Google Scholar] [CrossRef]
- Gönenç, A.; Erten, D.; Aslan, S.; Akinci, M.; Simşek, B.; Torun, M. Lipid Peroxidation and Antioxidant Status in Blood and Tissue of Malignant Breast Tumor and Benign Breast Disease. Cell Biol. Int. 2006, 30, 376–380. [Google Scholar] [CrossRef]
- Nasim, F.-U.-H.; Ejaz, S.; Ashraf, M.; Asif, A.R.; Oellerich, M.; Ahmad, G.; Malik, G.A. Attiq-Ur-Rehman Potential Biomarkers in the Sera of Breast Cancer Patients from Bahawalpur, Pakistan. Biomark. Cancer 2012, 4, 19–34. [Google Scholar] [CrossRef]
- Dupont, W.D.; Parl, F.F.; Hartmann, W.H.; Brinton, L.A.; Winfield, A.C.; Worrell, J.A.; Schuyler, P.A.; Plummer, W.D. Breast Cancer Risk Associated with Proliferative Breast Disease and Atypical Hyperplasia. Cancer 1993, 71, 1258–1265. [Google Scholar] [CrossRef]
- Kabat, G.C.; Jones, J.G.; Olson, N.; Negassa, A.; Duggan, C.; Ginsberg, M.; Kandel, R.A.; Glass, A.G.; Rohan, T.E. A Multi-Center Prospective Cohort Study of Benign Breast Disease and Risk of Subsequent Breast Cancer. Cancer Causes Control 2010, 21, 821–828. [Google Scholar] [CrossRef]
- Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Lingle, W.L.; Degnim, A.C.; Ghosh, K.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Hillman, D.W.; et al. Benign Breast Disease and the Risk of Breast Cancer. N. Engl. J. Med. 2005, 353, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Visscher, D.W.; Frank, R.D.; Carter, J.M.; Vierkant, R.A.; Winham, S.J.; Heinzen, E.P.; Broderick, B.T.; Denison, L.A.; Allers, T.M.; Johnson, J.L.; et al. Breast Cancer Risk and Progressive Histology in Serial Benign Biopsies. J. Natl. Cancer Inst. 2017, 109, djx035. [Google Scholar] [CrossRef] [PubMed]
- Hamrita, B.; Ben Nasr, H.; Gabbouj, S.; Bouaouina, N.; Chouchane, L.; Chahed, K. Apolipoprotein A1 −75 G/A and +83 C/T Polymorphisms: Susceptibility and Prognostic Implications in Breast Cancer. Mol. Biol. Rep. 2011, 38, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Al-Bustan, S.A.; Al-Serri, A.E.; Annice, B.G.; Alnaqeeb, M.A.; Ebrahim, G.A. Re-Sequencing of the APOAI Promoter Region and the Genetic Association of the −75G > A Polymorphism with Increased Cholesterol and Low Density Lipoprotein Levels among a Sample of the Kuwaiti Population. BMC Med. Genet. 2013, 14, 90. [Google Scholar] [CrossRef]
- Hosseini-Esfahani, F.; Mirmiran, P.; Daneshpour, M.S.; Mottaghi, A.; Azizi, F. The Effect of Interactions of Single Nucleotide Polymorphisms of APOA1/APOC3 with Food Group Intakes on the Risk of Metabolic Syndrome. Avicenna J. Med. Biotechnol. 2017, 9, 94–103. [Google Scholar] [PubMed]
- Hsu, M.-C.; Lee, K.-T.; Hsiao, W.-C.; Wu, C.-H.; Sun, H.-Y.; Lin, I.-L.; Young, K.-C. The Dyslipidemia-Associated SNP on the APOA1/C3/A5 Gene Cluster Predicts Post-Surgery Poor Outcome in Taiwanese Breast Cancer Patients: A 10-Year Follow-up Study. BMC Cancer 2013, 13, 330. [Google Scholar] [CrossRef][Green Version]
- Yan, Q.M.; Thomas, G.N.; Tomlinson, B. Association of Two Apolipoprotein A-I Gene MspI Polymorphisms with Lipid and Blood Pressure Levels. Int. J. Cardiol. 2005, 102, 309–314. [Google Scholar] [CrossRef]
- Liao, B.; Cheng, K.; Dong, S.; Liu, H.; Xu, Z. Effect of Apolipoprotein A1 Genetic Polymorphisms on Lipid Profiles and the Risk of Coronary Artery Disease. Diagn. Pathol. 2015, 10, 102. [Google Scholar] [CrossRef]
- Al-Bustan, S.A.; Alnaqeeb, M.A.; Annice, B.G.; Ebrahim, G.A.; Refai, T.M. Genetic Association of APOB Polymorphisms with Variation in Serum Lipid Profile among the Kuwait Population. Lipids Health Dis. 2014, 13, 157. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Qu, H.; Hou, M.; Cao, W.; Ma, Z.; Wang, H. Associations of Polymorphisms of Rs693 and Rs1042031 in Apolipoprotein B Gene with Risk of Breast Cancer in Chinese. Jpn. J. Clin. Oncol 2013, 43, 362–368. [Google Scholar] [CrossRef]
- Mendizábal-Ruiz, A.P.; Morales, J.; Castro Martinez, X.; Gutierrez Rubio, S.A.; Valdez, L.; Vásquez-Camacho, J.G.; Sanchez Corona, J.; Moran Moguel, M.C. RAS Polymorphisms in Cancerous and Benign Breast Tissue. J. Renin. Angiotensin. Aldosterone. Syst. 2011, 12, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Quevedo, E.G.C.; Aguilar, G.M.M.; Aguilar, L.A.J.; Rubio, S.A.G.; Martínez, S.E.F.; Rodríguez, I.P.D.; Corona, J.S.; Morán, M.I.T.; Gómez, R.C.R.; Moguel, M.C.M. Polymorphisms Rs12998 and Rs5780218 in KiSS1 Suppressor Metastasis Gene in Mexican Patients with Breast Cancer. Dis. Markers 2015, 2015, 365845. [Google Scholar] [CrossRef] [PubMed]
- Chavarria-Ávila, E.; Ruíz Quezada, S.L.; Guzmán-Ornelas, M.-O.; Castro-Albarrán, J.; Aguilar Aldrete, M.E.; Vásquez-Del Mercado, M.; Navarro-Hernández, R.-E. Association of Resistin Gene 3′UTR+62G>A Polymorphism with Insulin Resistance, Adiposity and the Adiponectin-Resistin Index in Mexican Population. Nutr. Hosp. 2013, 28, 1867–1876. [Google Scholar] [PubMed]
- Smith, J.D.; Brinton, E.A.; Breslow, J.L. Polymorphism in the Human Apolipoprotein A-I Gene Promoter Region. Association of the Minor Allele with Decreased Production Rate in Vivo and Promoter Activity In Vitro. J. Clin. Investig. 1992, 89, 1796–1800. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, Y.; Tang, L.; Jiang, L.; Wang, Y.; Zhang, R.; Wei, Q.; Lu, Y. Apolipoprotein A1 -75 G/A and +83 C/T Polymorphisms and Renal Cancer Risk. Lipids Health Dis. 2015, 14, 143. [Google Scholar] [CrossRef]
- Sinha, R.; Singh, R. Role of Apolipoprotein AI Gene Polymorphism (G-75A and C+83T) in Essential Hypertension in Indian Population. Ann. Clin. Lab. Sci. 2014, 44, 298–303. [Google Scholar]
- Heng, C.K.; Low, P.S.; Saha, N. Variations in the Promoter Region of the Apolipoprotein A-1 Gene Influence Plasma Lipoprotein(a) Levels in Asian Indian Neonates from Singapore. Pediatr. Res. 2001, 49, 514–518. [Google Scholar] [CrossRef][Green Version]
- Carmena-ramon, R.F.; Ordovas, J.M.; Ascaso, J.F.; Real, J.; Priego, M.A.; Carmena, R. Influence of Genetic Variation at the Apo A-I Gene Locus on Lipid Levels and Response to Diet in Familial Hypercholesterolemia. Atherosclerosis 1998, 139, 107–113. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Bunker, C.H.; Aston, C.E.; Nestlerode, C.S.; Mcallister, A.E.; Ukoli, F.A. Genetic Association of Five Apolipoprotein Polymorphisms with Serum Lipoprotein-Lipid Levels in African Blacks. Genet. Epidemiol. 1999, 222, 205–222. [Google Scholar] [CrossRef]
- Bora, K.; Pathak, M.S.; Borah, P.; Hussain, M.I.; Das, D. Single Nucleotide Polymorphisms of APOA1 Gene and Their Relationship with Serum Apolipoprotein A-I Concentrations in the Native Population of Assam. Meta Gene 2016, 7, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Dawar, R.; Gurtoo, A.; Singh, R. Apolipoprotein A1 Gene Polymorphism (G–75A and C+83T) in Patients With Myocardial Infarction. Am. J. Clin. Pathol. 2010, 134, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Liu, S.X.; McCredie, R.M.; Wilcken, D.E. Polymorphisms at the 5′-End of the Apolipoprotein AI Gene and Severity of Coronary Artery Disease. J. Clin. Investig. 1996, 98, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Kamboh, M.I.; Aston, C.E.; Nestlerode, C.M.; McAllister, A.E.; Hamman, R.F. Haplotype Analysis of Two APOA1/MspI Polymorphisms in Relation to Plasma Levels of Apo A-I and HDL-Cholesterol. Atherosclerosis 1996, 127, 255–262. [Google Scholar] [CrossRef]
- Reguero, J.R.; Cubero, G.I.; Batalla, A.; Alvarez, V.; Hevia, S.; Cortina, A.; Coto, E. Apolipoprotein A1 Gene Polymorphisms and Risk of Early Coronary Disease. Cardiology 1998, 90, 231–235. [Google Scholar] [CrossRef] [PubMed]
SNP | Genotypes/Alleles | BCa n = 39 (%) | BBD n = 19 (%) | GP n = 150 (%) | Genotypic Association Test a |
---|---|---|---|---|---|
APOA1 rs670 | GG | 12 (30.8) | 5 (26.3) | 63 (42.0) | p = 0.2274 BCa vs. BBD |
GA | 22 (56.4) | 8 (42.1) | 70 (46.7) | p = 0.439 BCa vs. GP | |
AA | 5 (12.8) | 6 (31.6) | 17 (11.3) | p = 0.0454 * BBD vs. GP | |
G | 46 (59) | 18 (47.4) | 196 (65.3) | ||
A | 32 (41) | 20 (52.6) | 104 (34.7) | ||
APOA1 rs5069 | CC | 27 (69.2) | 8 (42.1) | 110 (73.3) | p = 0.119 BCa vs. BBD |
CT | 10 (25.6) | 10 (52.6) | 37 (24.7) | p = 0.541 BCa vs. GP | |
TT | 2 (5.1) | 1 (5.3) | 3 (2.0) | p = 0.0197 * BBD vs. GP | |
C | 64 (82.1) | 26 (68.4) | 257 (85.7) | ||
T | 14 (17.9) | 12 (31.6) | 43 (14.3) | ||
APOB rs693 | CC | 11 (28.2) | 5 (26.3) | 52 (34.7) | p = 0.3955 BCa vs. BBD |
CT | 26 (66.7) | 11 (57.9) | 78 (52.0) | p = 0.1838 BCa vs. GP | |
TT | 2 (5.1) | 3 (15.8) | 20 (13.3) | p = 0.7654 BBD vs. GP | |
C | 48 (61.5) | 21 (55.3) | 182 (60.7) | ||
T | 30 (38.5) | 17 (44.7) | 118 (39.3) | ||
APOB rs1042031 | GG | 26 (66.7) | 17 (89.5) | 115 (76.7) | p = 0.1693 BCa vs. BBD |
GA | 12 (30.8) | 2 (10.5) | 28 (18.7) | p = 0.2369 BCa vs. GP | |
AA | 1 (2.6) | 0 (0) | 7 (4.7) | p = 0.3925 BCa vs. GP | |
G | 64 (82.1) | 36 (94.7) | 258 (86.0) | ||
A | 14 (17.9) | 2 (5.3) | 42 (14.0) |
SNP (Gene) | Genetic Model | BCa vs. GP | BBD vs. GP | BCa vs. BBD | ||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | p | p-Corr | OR | p | p-Corr | OR | p | p-Corr | ||
rs670 (APOA1) | AA + GA vs. GG | 1.63 | 0.2703 | 0.5406 | 2.03 | 0.2222 | 0.3372 | 0.80 | 1 | 1 |
AA vs. GG + GA | 1.15 | 0.7823 | 0.7823 | 3.61 | 0.0268 * | 0.0803 | 0.32 | 0.1506 | 0.3011 | |
A vs. G | 1.31 | 0.354 | 0.6363 | 2.09 | 0.0335 * | 0.0670 | 0.63 | 0.32 | 0.4267 | |
rs5069 (APOA1) | TT + CT vs. CC | 1.22 | 0.6878 | 0.6878 | 3.78 | 0.0080 ** | 0.0320 * | 0.32 | 0.0847 | 0.2168 |
TT vs. CC + CT | 2.65 | 0.2748 | 0.4122 | 2.72 | 0.3822 | 0.5733 | 0.97 | 1 | 1 | |
T vs. C | 1.31 | 0.4772 | 0.6363 | 2.76 | 0.0170 * | 0.0670 | 0.47 | 0.1534 | 0.3067 | |
rs693 (APOB) | TT + CT vs. CC | 1.35 | 0.5678 | 0.6878 | 1.48 | 0.6092 | 0.6092 | 0.91 | 1 | 1 |
TT vs. CC + CT | 0.35 | 0.2596 | 0.4122 | 1.22 | 0.7265 | 0.7265 | 0.29 | 0.3179 | 0.3179 | |
T vs. C | 0.96 | 1 | 1 | 1.25 | 0.5986 | 0.5986 | 0.77 | 0.5502 | 0.5502 | |
rs1042031 (APOB) | AA + GA vs. GG | 1.64 | 0.2186 | 0.5406 | 0.39 | 0.2529 | 0.3372 | 4.25 | 0.1084 | 0.2168 |
AA vs. GG + GA | 0.54 | 1 | 1 | 0 | 1 | 1 | - | 1 | 1 | |
A vs. G | 1.34 | 0.3752 | 0.6363 | 0.34 | 0.1980 | 0.2640 | 3.94 | 0.0854 | 0.3067 |
SNP A | SNP B | r2 | ||
---|---|---|---|---|
GP | BCa | BBD | ||
rs670 | rs5069 | 0.002 | 0.0986 | 0.0266 |
rs693 | rs1042031 | 0.1841 | 0.0049 | 0.0032 |
Haplotype | BCa Frequency | GP Frequency | χ2 | p | |
---|---|---|---|---|---|
rs670|rs5069 | |||||
H1 | AT | 0.0404 | 0.0478 | 0.076 | 0.7828 |
H2 | GT | 0.1391 | 0.0955 | 1.252 | 0.2631 |
H3 | AC | 0.3698 | 0.2989 | 1.448 | 0.2289 |
H4 | GC | 0.4507 | 0.5578 | 2.855 | 0.09109 |
rs693|rs1042031 | |||||
H6 | CA | 0.1535 | 0.1381 | 0.1179 | 0.7314 |
H7 | TG | 0.3651 | 0.392 | 0.1839 | 0.6681 |
H8 | CG | 0.4814 | 0.4699 | 0.0320 | 0.8581 |
Haplotype | BBD Frequency | GP Frequency | χ2 | p | |
rs670|rs5069 | |||||
H1 | AT | 0.2007 | 0.0659 | 8.234 | 0.0041 ** |
H2 | GT | 0.1151 | 0.0774 | 0.6363 | 0.4251 |
H3 | AC | 0.3256 | 0.2808 | 0.3318 | 0.5646 |
H4 | GC | 0.3586 | 0.5759 | 6.437 | 0.0112 * |
rs693|rs1042031 | |||||
H6 | CA | 0.0526 | 0.14 | 2.274 | 0.1316 |
H7 | TG | 0.4474 | 0.3933 | 0.4105 | 0.5217 |
H8 | CG | 0.5 | 0.4667 | 0.1504 | 0.6981 |
Haplotype | BCa Frequency | BBD Frequency | χ2 | p | |
rs670|rs5069 | |||||
H1 | AT | 0.0381 | 0.173 | 6.164 | 0.0130 * |
H2 | GT | 0.1414 | 0.1428 | 0.0004 | 0.9846 |
H3 | AC | 0.3722 | 0.3533 | 0.0394 | 0.8427 |
H4 | GC | 0.4483 | 0.3309 | 1.456 | 0.2276 |
rs693|rs1042031 | |||||
H5 | TA | 0.0567 | 0.0212 | 0.7458 | 0.3878 |
H6 | CA | 0.1228 | 0.0314 | 2.535 | 0.1114 |
H7 | TG | 0.3279 | 0.4261 | 1.069 | 0.3011 |
H8 | CG | 0.4926 | 0.5212 | 0.0839 | 0.772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Díaz, C.; Morán-Moguel, M.C.; Navarro-Hernandez, R.E.; Romo-Vázquez, R.; Mendizabal-Ruiz, A.P. Association of SNP rs5069 in APOA1 with Benign Breast Diseases in a Mexican Population. Genes 2022, 13, 738. https://doi.org/10.3390/genes13050738
Domínguez-Díaz C, Morán-Moguel MC, Navarro-Hernandez RE, Romo-Vázquez R, Mendizabal-Ruiz AP. Association of SNP rs5069 in APOA1 with Benign Breast Diseases in a Mexican Population. Genes. 2022; 13(5):738. https://doi.org/10.3390/genes13050738
Chicago/Turabian StyleDomínguez-Díaz, Carolina, María Cristina Morán-Moguel, Rosa Elena Navarro-Hernandez, Rebeca Romo-Vázquez, and Adriana Patricia Mendizabal-Ruiz. 2022. "Association of SNP rs5069 in APOA1 with Benign Breast Diseases in a Mexican Population" Genes 13, no. 5: 738. https://doi.org/10.3390/genes13050738
APA StyleDomínguez-Díaz, C., Morán-Moguel, M. C., Navarro-Hernandez, R. E., Romo-Vázquez, R., & Mendizabal-Ruiz, A. P. (2022). Association of SNP rs5069 in APOA1 with Benign Breast Diseases in a Mexican Population. Genes, 13(5), 738. https://doi.org/10.3390/genes13050738