SORL1 Polymorphisms in Mexican Patients with Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. SNP Identification
2.3. DNA Extraction and Genotyping
2.4. Ancestry Analysis
2.5. SORL1 Polymorphisms and ApoEε4 Carriers
2.6. Statistical Analysis
2.7. MDR Analysis
3. Results
3.1. Study Population
3.2. Testing for Hardy–Weinberg Equilibrium
3.3. Ancestry Analysis
3.4. Analyzed SNPs and LOAD Risk
3.5. Haplotype Analysis
3.6. Evaluation of Gene–Gene Interactions: MDR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, O.M.; Reiche, J.; Schmidt, V.; Gotthardt, M.; Spoelgen, R.; Behlke, J.; von Arnim, C.A.; Breiderhoff, T.; Jansen, P.; Wu, X.; et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 2005, 102, 13461–13466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiete, D.; Mi, Y.; Oats, E.L.; Beranek, M.C.; Baenziger, J.U. N-linked oligosaccharides on the low density lipoprotein receptor homolog SorLA/LR11 are modified with terminal GalNAc-4-SO4 in kidney and brain. J. Biol. Chem. 2007, 282, 1873–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, V.; Sporbert, A.; Rohe, M.; Reimer, T.; Rehm, A.; Andersen, O.M.; Willnow, T.E. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J. Biol. Chem. 2007, 282, 32956–32964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offe, K.; Dodson, S.E.; Shoemaker, J.T.; Fritz, J.J.; Gearing, M.; Levey, A.I.; Lah, J.J. The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 2006, 26, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R.; St George-Hyslop, P. Brain traffic: Subcellular transport of the amyloid precursor protein. Arch. Neurol. 2009, 66, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Liu, M.E.; Kao, H.W.; Chou, K.H.; Yang, A.C.; Wang, Y.H.; Chen, T.R.; Tsai, S.J.; Lin, C.P. Effect of Alzheimer’s Disease Risk Variant rs3824968 at SORL1 on Regional Gray Matter Volume and Age-Related Interaction in Adult Lifespan. Sci. Rep. 2016, 6, 23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, G.; Forlenza, O.V.; Santos, B.; Bertolucci, P.H.; Ojopi, E.B.; Gattaz, W.F.; Kerr, D.S. Single-nucleotide polymorphisms of GSK3B, GAB2 and SORL1 in late-onset Alzheimer’s disease: Interactions with the APOE genotype. Clinics 2013, 68, 277–280. [Google Scholar] [CrossRef]
- Meng, Y.; Lee, J.H.; Cheng, R.; St George-Hyslop, P.; Mayeux, R.; Farrer, L.A. Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport 2007, 18, 1761–1764. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.A.; Hong, M.G.; Eriksson, U.K.; Blennow, K.; Johansson, B.; Malmberg, B.; Berg, S.; Gatz, M.; Pedersen, N.L.; Bennet, A.M.; et al. Sequence variation in SORL1 and dementia risk in Swedes. Neurogenetics 2010, 11, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Rogaeva, E.; Meng, Y.; Lee, J.H.; Gu, Y.; Kawarai, T.; Zou, F.; Katayama, T.; Baldwin, C.T.; Cheng, R.; Hasegawa, H.; et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 2007, 39, 168–177. [Google Scholar] [CrossRef]
- Wider, C.; Wszolek, Z.K. Etiology and pathophysiology of frontotemporal dementia, Parkinson disease and Alzheimer disease: Lessons from genetic studies. Neuro-Degener. Dis. 2008, 5, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherzer, C.R.; Offe, K.; Gearing, M.; Rees, H.D.; Fang, G.; Heilman, C.J.; Schaller, C.; Bujo, H.; Levey, A.I.; Lah, J.J. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 2004, 61, 1200–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettens, K.; Brouwers, N.; Engelborghs, S.; De Deyn, P.P.; Van Broeckhoven, C.; Sleegers, K. SORL1 is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. Hum. Mutat. 2008, 29, 769–770. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cheng, R.; Honig, L.S.; Vonsattel, J.P.; Clark, L.; Mayeux, R. Association between genetic variants in SORL1 and autopsy-confirmed Alzheimer disease. Neurology 2008, 70, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.T.; Liao, Y.C.; Lee, W.J.; Wang, S.J.; Fuh, J.L. SORL1 gene, plasma biomarkers, and the risk of Alzheimer’s disease for the Han Chinese population in Taiwan. Alzheimer’s Res. 2016, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Liu, Z.J.; Tao, S.; Sun, Y.M.; Jiang, D.; Li, H.L.; Chen, H.; Liu, X.; Lapin, B.; Wang, C.H.; et al. Risk prediction for sporadic Alzheimer’s disease using genetic risk score in the Han Chinese population. Oncotarget 2015, 6, 36955–36964. [Google Scholar] [CrossRef] [Green Version]
- Minster, R.L.; DeKosky, S.T.; Kamboh, M.I. No association of SORL1 SNPs with Alzheimer’s disease. Neurosci. Lett. 2008, 440, 190–192. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Forlenza, O.V.; Diniz, B.S.; Talib, L.L.; Radanovic, M.; Yassuda, M.S.; Ojopi, E.B.; Gattaz, W.F. Clinical and biological predictors of Alzheimer’s disease in patients with amnestic mild cognitive impairment. Rev. Bras. Psiquiatr. 2010, 32, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, S.; Coyle, N.E.; Tang, H.; Salari, K.; Lind, D.; Clark, S.L.; Tsai, H.J.; Naqvi, M.; Phong, A.; Ung, N.; et al. Population stratification confounds genetic association studies among Latinos. Hum. Genet. 2006, 118, 652–664. [Google Scholar] [CrossRef]
- Salari, K.; Choudhry, S.; Tang, H.; Naqvi, M.; Lind, D.; Avila, P.C.; Coyle, N.E.; Ung, N.; Nazario, S.; Casal, J.; et al. Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet. Epidemiol. 2005, 29, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Ziv, E.; John, E.M.; Choudhry, S.; Kho, J.; Lorizio, W.; Perez-Stable, E.J.; Burchard, E.G. Genetic ancestry and risk factors for breast cancer among Latinas in the San Francisco Bay Area. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1878–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toral-Rios, D.; Franco-Bocanegra, D.; Rosas-Carrasco, O.; Mena-Barranco, F.; Carvajal-Garcia, R.; Meraz-Rios, M.A.; Campos-Pena, V. Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer’s disease: A pilot study. Front. Cell. Neurosci. 2015, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genomes Project, C.; Abecasis, G.R.; Altshuler, D.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Gibbs, R.A.; Hurles, M.E.; McVean, G.A. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Sole, X.; Guino, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.D.; Hahn, L.W.; Moore, J.H. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol. 2003, 24, 150–157. [Google Scholar] [CrossRef]
- Fernandez-Torres, J.; Martinez-Nava, G.A.; Zamudio-Cuevas, Y.; Lozada, C.; Garrido-Rodriguez, D.; Martinez-Flores, K. Epistasis of polymorphisms related to the articular cartilage extracellular matrix in knee osteoarthritis: Analysis-based multifactor dimensionality reduction. Genet. Mol. Biol. 2020, 43, e20180349. [Google Scholar] [CrossRef]
- Milenkovic, J.; Milojkovic, M.; Mitic, D.; Stoimenov, T.J.; Smelcerovic, Z.; Stojanovic, D.; Vujic, S.; Bojanic, N. Interaction of thrombophilic SNPs in patients with unexplained infertility-multifactor dimensionality reduction (MDR) model analysis. J. Assist. Reprod. Genet. 2020, 37, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Umare, V.; Pradhan, V.; Dadheech, S.; Rajadhyaksha, A.; Ghosh, K.; Nadkarni, A. Cytokine genes multi-locus analysis reveals synergistic influence on genetic susceptibility in Indian SLE—A multifactor-dimensionality reduction approach. Cytokine 2020, 135, 155240. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Luo, L.; Feng, Y.; Liu, D.; Wang, F.; Che, R.; Zhu, J.; Duan, X.; Tang, Y.; Wang, J.; et al. Gene-gene interaction and new onset of major depressive disorder: Findings from a Chinese freshmen nested case-control study. J. Affect. Disord. 2022, 300, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Hahn, L.W.; Ritchie, M.D.; Moore, J.H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, R.; Yamamoto, M.; Morihara, T.; Akatsu, H.; Kudo, T.; Kamino, K.; Takeda, M. SORL1 is genetically associated with Alzheimer disease in a Japanese population. Neurosci. Lett. 2009, 461, 177–180. [Google Scholar] [CrossRef]
- Lee, J.H.; Cheng, R.; Schupf, N.; Manly, J.; Lantigua, R.; Stern, Y.; Rogaeva, E.; Wakutani, Y.; Farrer, L.; St George-Hyslop, P.; et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch. Neurol. 2007, 64, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Ning, M.; Yang, Y.; Zhang, Z.; Chen, Z.; Zhao, T.; Zhang, D.; Zhou, D.; Xu, J.; Liu, Z.; Wang, Y.; et al. Amyloid-β-related genes SORL1 and ACE are genetically associated with risk for late-onset Alzheimer disease in the Chinese population. Alzheimer Dis. Assoc. Disord. 2010, 24, 390–396. [Google Scholar] [CrossRef]
- Shibata, N.; Ohnuma, T.; Baba, H.; Higashi, S.; Nishioka, K.; Arai, H. Genetic association between SORL1 polymorphisms and Alzheimer’s disease in a Japanese population. Dement. Geriatr. Cogn. Disord. 2008, 26, 161–164. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, W.; Hua, L.; Wang, Y.; Li, J.; Bai, H.; Wang, S.; Du, M.; Ma, X.; Xu, C.; et al. Interaction between PPAR γ and SORL1 gene with Late-Onset Alzheimer’s disease in Chinese Han Population. Oncotarget 2017, 8, 48313–48320. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Flores, J.; Dondiego-Aldape, R.; Rubi-Castellanos, R.; Anaya-Palafox, M.; Nuno-Arana, I.; Canseco-Avila, L.M.; Flores-Flores, G.; Morales-Vallejo, M.E.; Barojas-Perez, N.; Munoz-Valle, J.F.; et al. Population structure and paternal admixture landscape on present-day Mexican-Mestizos revealed by Y-STR haplotypes. Am. J. Hum. Biol. 2010, 22, 401–409. [Google Scholar] [CrossRef]
- Ikeuchi, T.; Hirayama, S.; Miida, T.; Fukamachi, I.; Tokutake, T.; Ebinuma, H.; Takubo, K.; Kaneko, H.; Kasuga, K.; Kakita, A.; et al. Increased levels of soluble LR11 in cerebrospinal fluid of patients with Alzheimer disease. Dement. Geriatr. Cogn. Disord. 2010, 30, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Mehmedbasic, A.; Christensen, S.K.; Nilsson, J.; Ruetschi, U.; Gustafsen, C.; Poulsen, A.S.; Rasmussen, R.W.; Fjorback, A.N.; Larson, G.; Andersen, O.M. SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J. Biol. Chem. 2015, 290, 3359–3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, M.P.; Allen, A.S.; Satten, G.A. A simple and improved correction for population stratification in case-control studies. Am. J. Hum. Genet. 2007, 80, 921–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, X.; Zhang, M.; Lin, Y.; Xu, E.; Jia, J. Association between the SORL1 rs2070045 polymorphism and late-onset Alzheimer’s disease: Interaction with the ApoE genotype in the Chinese Han population. Neurosci. Lett. 2014, 559, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Louwersheimer, E.; Ramirez, A.; Cruchaga, C.; Becker, T.; Kornhuber, J.; Peters, O.; Heilmann, S.; Wiltfang, J.; Jessen, F.; Visser, P.J.; et al. Influence of genetic variants in SORL1 gene on the manifestation of Alzheimer’s disease. Neurobiol. Aging 2015, 36, 1605.e13–1605.e20. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, S.; Bauerfeind, A.; Schmidt, V.; Carlo, A.S.; Prabakaran, T.; Hubner, N.; Willnow, T.E. Identification of Alzheimer disease risk genotype that predicts efficiency of SORL1 expression in the brain. Arch. Neurol. 2012, 69, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Belbin, O.; Dunn, J.L.; Ling, Y.; Morgan, L.; Chappell, S.; Beaumont, H.; Warden, D.; Smith, D.A.; Kalsheker, N.; Morgan, K. Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene and the rate of cognitive decline in Alzheimer’s disease. Hum. Mol. Genet. 2007, 16, 2199–2208. [Google Scholar] [CrossRef] [Green Version]
- Zollo, A.; Allen, Z.; Rasmussen, H.F.; Iannuzzi, F.; Shi, Y.; Larsen, A.; Maier, T.J.; Matrone, C. Sortilin-Related Receptor Expression in Human Neural Stem Cells Derived from Alzheimer’s Disease Patients Carrying the APOE Epsilon 4 Allele. Neural Plast. 2017, 2017, 1892612. [Google Scholar] [CrossRef] [Green Version]
- Yajima, R.; Tokutake, T.; Koyama, A.; Kasuga, K.; Tezuka, T.; Nishizawa, M.; Ikeuchi, T. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA. Biochem. Biophys. Res. Commun. 2015, 456, 482–488. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, H.; Zheng, M.; Li, Y.; Cui, Y.; Hao, F. Meta-analysis of the Association between Alzheimer Disease and Variants in GAB2, PICALM, and SORL1. Mol. Neurobiol. 2016, 53, 6501–6510. [Google Scholar] [CrossRef]
- Shen, J.; Qin, W.; Xu, Q.; Xu, L.; Xu, J.; Zhang, P.; Liu, H.; Liu, B.; Jiang, T.; Yu, C. Modulation of APOE and SORL1 genes on hippocampal functional connectivity in healthy young adults. Brain Struct. Funct. 2017, 222, 2877–2889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Li, H.; Lv, C.; Shu, N.; Chen, K.; Li, X.; Zhang, J.; Hu, L.; Zhang, Z. Sex Moderates the Effects of the Sorl1 Gene rs2070045 Polymorphism on Cognitive Impairment and Disruption of the Cingulum Integrity in Healthy Elderly. Neuropsychopharmacology 2015, 40, 2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitz, C.; Cheng, R.; Rogaeva, E.; Lee, J.H.; Tokuhiro, S.; Zou, F.; Bettens, K.; Sleegers, K.; Tan, E.K.; Kimura, R.; et al. Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch. Neurol. 2011, 68, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Group | Number of Women | Age Women (Years) (Mean ± SD) | Number of Men | Age Men (Years) (Mean ± SD) | Total | Total Mean Age | p Value |
---|---|---|---|---|---|---|---|
LOAD | 106 (67.9%) | 76.24 ± 8.59 | 50 (32.1%) | 73.22 ± 9.56 | 156 | 76.14 ± 8.8 | 0.008 a |
Controls | 167 (75.6%) | 73.01 ± 8.7 | 54 (24.4%) | 75.6 ± 7.298 | 221 | 73.64 ± 8.5 |
Polymorphisms | Genotype Frequency (%) | HWE p | Model Inheritance | |||||
---|---|---|---|---|---|---|---|---|
rs668387 | C/C | T/T | T/C | p | OR (95%) | |||
Controls (n = 221) | 68 (30.8) | 39 (17.6) | 114 (51.6) | 0.459 | G/G vs. A/A+A/G | 0.976 | 1.007 (0.640–1.584) | |
Cases (n = 156) | 47 (30.1) | 24 (15.4) | 85 (54.5) | 0.155 | G/G+A/G vs. A/A | 0.758 | 1.093 (0.621–1.923) | |
G/A vs. G/G+A/A | 0.84 | 1.044 (0.687–1.587) | ||||||
rs689021 | G/G | A/A | G/A | |||||
Controls (n = 221) | 66 (29.9) | 39 (17.6) | 116 (52.5) | 0.329 | C/C vs. T/T+C/T | 0.713 | 1.089 (0.692–1.714) | |
Cases (n = 156) | 48 (30.8) | 23 (14.7) | 85 (54.5) | 0.139 | C/C+C/T vs. T/T | 0.62 | 1.155 (0.653–2.045) | |
C/T vs. C/C+T/T | 0.978 | 1.006 (0.662–1.530) | ||||||
rs641120 | C/C | T/T | C/T | |||||
Controls (n = 221) | 68 (30.8) | 38 (17.2) | 115 (52.0) | 0.37 | C/C vs. T/T+C/T | 0.743 | 1.078 (0.687–1.692) | |
Cases (n = 156) | 49 (31.4) | 23 (14.7) | 84 (53.8) | 0.179 | C/C+C/T vs. T/T | 0.657 | 1.139 (0.642–2.019) | |
C/T vs. C/C+T/T | 0.981 | 1.005 (0.661–1.527) | ||||||
rs2070045 | G/G | T/T | G/T | |||||
Controls (n = 221) | 68 (30.8) | 50 (22.6) | 103 (46.6) | 0.359 | T/T vs. G/G+G/T | 0.766 | 1.078 (0.659–1.762) | |
Cases (n = 156) | 42 (26.9) | 38 (24.4) | 76 (48.7) | 0.755 | T/T+G/T vs. G/G | 0.469 | 1.186 (0.748–1.880) | |
G/T vs. G/G+T/T | 0.684 | 1.090 (0.719–1.653) | ||||||
rs3824966 | C/C | G/G | C/G | |||||
Controls (n = 221) | 54 (24.4) | 65 (29.4) | 102 (46.2) | 0.267 | C/C vs. G/G+C/G | 0.869 | 1.041 (0.644–1.684) | |
Cases (n = 156) | 40 (25.6) | 42 (26.9) | 74 (47.4) | 0.523 | C/C+C/G vs. G/G | 0.635 | 1.119 (0.704–1.778) | |
C/G vs. C/C+G/G | 0.775 | 1.063 (0.701–1.612) | ||||||
rs1699102 | C/C | T/T | C/T | |||||
Controls (n = 221) | 103(46.6) | 26 (11.8) | 92 (41.6) | 0.436 | T/T vs. C/C+C/T | 0.221 | 1.454 (0.799–2.647) | |
Cases (n = 156) | 62 (39.7) | 26 (16.7) | 68 (43.6) | 0.323 | T/T+C/T vs. C/C | 0.181 | 1.334 (0.874–2.036) | |
C/T vs. T/T+C/C | 0.626 | 1.110 (0.729–1.690) | ||||||
rs3824968 | A/A | T/T | A/T | |||||
Controls (n = 221) | 65 (29.4) | 47 (21.3) | 109 (49.3) | 0.917 | T/T vs. A/A+A/T | 0.497 | 1.187 (0.724–1.946) | |
Cases (n = 156) | 41 (26.3) | 38 (24.4) | 77 (49.3) | 0.876 | T/T+A/T vs. A/A | 0.626 | 1.123 (0.704–1.791) | |
A/T vs. T/T+A/A | 0.895 | 0.972 (0.642–1.474) | ||||||
rs2282649 | C/C | T/T | C/T | |||||
Controls (n = 221) | 52 (23.5) | 65 (29.4) | 104 (47.1) | 0.409 | C/C vs. T/T+C/T | 0.695 | 1.101 (0.680–1.783) | |
Cases (n = 156) | 41 (26.3) | 39 (25.0) | 76 (48.7) | 0.75 | C/C+C/T vs. T/T | 0.482 | 1.184 (0.739–1.896) | |
C/T vs. C/C+T/T | 0.773 | 1.063 (0.702–1.611) | ||||||
rs1010159 | G/G | A/A | A/G | |||||
Controls (n = 221) | 71 (32.1) | 50 (22.6) | 100 (45.2) | 0.197 | A/A vs. G/G+A/G | 0.053 | 1.590 (0.995–2.541) | |
Cases (n = 156) | 43 (27.6) | 49 (31.4) | 64 (41.0) | 0.026 | A/A+A/G vs. G/G | 0.359 | 1.239 (0.784–1.956) | |
A/G vs. A/A+G/G | 0.381 | 0.829 (0.544–1.262) | ||||||
rs1784933 | A/A | G/G | A/G | |||||
Controls (n = 221) | 71 (32.1) | 50 (22.6) | 100 (45.2) | 0.197 | A/A vs. G/G+A/G | 0.03 | 1.608 (1.046–2.473) | |
Cases (n = 156) | 68 (43.6) | 24 (15.4) | 64 (41.0) | 0.175 | A/A+A/G vs. G/G | 0.123 | 1.538 (0.890–2.656) | |
A/G vs. A/A+G/G | 0.38 | 0.828 (0.544–1.261) | ||||||
APOE | APOEε4 non carriers | APOEε4 carriers | ||||||
Controls (n = 221) | 188 (85.1) | 33 (14.9) | ε4 carriers vs. Non carriers | 0.000 | 3.630 (2.195–6.004) | |||
Cases (n = 156) | 98 (62.8) | 58 (37.2) |
Model | Sensitivity | Specificity | Precision | OR (95% CI) | p Value |
---|---|---|---|---|---|
(%) | (%) | (%) | |||
Block 1 | 0.456 | 0.609 | 0.451 | 1.304 (0.842–2.020) | 0.2341 |
rs1784933 | 0.436 | 0.679 | 0.489 | 1.633 (1.044–2.553) | 0.0311 |
Block 1 and rs1784933 | 0.868 | 0.32 | 0.474 | 3.097 (1.750–5.492) | 0.0001 |
Block 1 and rs1784933 * | 0.673 | 0.632 | 0.564 | 3.531(2.641–6.845) | 0.0001 |
Block 1 and rs1784933 ** | 0.699 | 0.704 | 0.625 | 5.539 (3.701–8.289) | 0.0001 |
Block 2 | 0.634 | 0.617 | 0.539 | 2.794 (1.787–4.368) | 0.0001 |
ApoEε4 | 0.372 | 0.851 | 0.637 | 3.372 (2.007–5.665) | 0.0001 |
Block 2 and ApoEε4 | 0.62 | 0.796 | 0.682 | 6.372 (3.924–10.347) | 0.0001 |
Block 2 and ApoEε4 * | 0.769 | 0.731 | 0.719 | 10.706 (6.783–16.899) | 0.0001 |
Block 2 and ApoEε4 ** | 0.813 | 0.875 | 0.821 | 30.334 (18.222–50.495) | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toral-Rios, D.; Ruiz-Sánchez, E.; Rodríguez, N.L.M.; Maury-Rosillo, M.; Rosas-Carrasco, Ó.; Becerril-Pérez, F.; Mena-Barranco, F.; Carvajal-García, R.; Silva-Adaya, D.; Delgado-Namorado, Y.; et al. SORL1 Polymorphisms in Mexican Patients with Alzheimer’s Disease. Genes 2022, 13, 587. https://doi.org/10.3390/genes13040587
Toral-Rios D, Ruiz-Sánchez E, Rodríguez NLM, Maury-Rosillo M, Rosas-Carrasco Ó, Becerril-Pérez F, Mena-Barranco F, Carvajal-García R, Silva-Adaya D, Delgado-Namorado Y, et al. SORL1 Polymorphisms in Mexican Patients with Alzheimer’s Disease. Genes. 2022; 13(4):587. https://doi.org/10.3390/genes13040587
Chicago/Turabian StyleToral-Rios, Danira, Elizabeth Ruiz-Sánchez, Nancy Lucero Martínez Rodríguez, Marlene Maury-Rosillo, Óscar Rosas-Carrasco, Fernando Becerril-Pérez, Francisco Mena-Barranco, Rosa Carvajal-García, Daniela Silva-Adaya, Yair Delgado-Namorado, and et al. 2022. "SORL1 Polymorphisms in Mexican Patients with Alzheimer’s Disease" Genes 13, no. 4: 587. https://doi.org/10.3390/genes13040587
APA StyleToral-Rios, D., Ruiz-Sánchez, E., Rodríguez, N. L. M., Maury-Rosillo, M., Rosas-Carrasco, Ó., Becerril-Pérez, F., Mena-Barranco, F., Carvajal-García, R., Silva-Adaya, D., Delgado-Namorado, Y., Ramos-Palacios, G., Sánchez-Torres, C., & Campos-Peña, V. (2022). SORL1 Polymorphisms in Mexican Patients with Alzheimer’s Disease. Genes, 13(4), 587. https://doi.org/10.3390/genes13040587