Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Demographics
2.2. Phenotypes Collected
- Disc shape: shape of the disc only without the surrounding PPA. Discs were categorized as round or oval;
- Shape of cup: cup shape was described as conical, cylindrical, or bean-pot shaped (excavated cup);
- Cup depth: depth of cup was described as shallow, moderate, or severe;
- Rim plane position: neuroretinal rim was evaluated to see if any portion of the rim was at a lower plane than other parts of the rim;
- PPA: each image was assessed for presence of β PPA;
- Disc hemorrhage: defined as isolated flame-shaped or splinter-like hemorrhages on the disc or in the immediate peripapillary area;
- Notching of the cup;
- Pallor of optic disc: presence of diffuse or localized disc pallor was recorded.
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Association of SNP rs112369934 with Quantitative or Qualitative Phenotypes
3.2. Gender-Stratified Analysis for SNP rs112369934
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinmetz, J.D.; Bourne, R.R.A.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.B.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.; et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Leung, C.K.S.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Tham, Y.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Katz, J.; Sommer, A.; Quigley, H.A.; Javitt, J.C. Family history and risk of primary open angle glaucoma. the baltimore eye survey. Arch. Ophthalmol. 1994, 112, 69–73. [Google Scholar] [CrossRef]
- Muñoz, B.; West, S.K.; Rubin, G.S.; Schein, O.D.; Quigley, H.A.; Bressler, S.B.; Bandeen-Roche, K. Causes of blindness and visual impairment in a population of older Americans: The salisbury eye evaluation study. Arch. Ophthalmol. (Chicago Ill. 1960) 2000, 118, 819–825. [Google Scholar] [CrossRef]
- The AGIS Investigators. The advanced glaucoma intervention study (AGIS): 3. baseline characteristics of black and white patients. Ophthalmology 1998, 105, 1137–1145. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Sommer, A.; Katz, J.; Royall, R.M.; Quigley, H.A.; Javitt, J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore eye survey. JAMA 1991, 266, 369–374. Available online: http://www.ncbi.nlm.nih.gov/pubmed/2056646 (accessed on 10 July 2021). [CrossRef]
- Wolfs, R.C.; Klaver, C.C.; Ramrattan, R.S.; van Duijn, C.M.; Hofman, A.; de Jong, P.T. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch. Ophthalmol. 1998, 116, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, A.; Tielsch, J.M.; Katz, J.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Singh, K. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch. Ophthalmol. 1991, 109, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Drance, S.M.; Schulzer, M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am. J. Ophthalmol. 2003, 136, 820–829. [Google Scholar] [CrossRef]
- Gordon, M.O.; Beiser, J.A.; Brandt, J.D.; Heuer, D.K.; Higginbotham, E.J.; Johnson, C.; Keltner, J.L.; Miller, J.P.; Parrish, R.K.; Wilson, M.R.; et al. The ocular hypertension treatment study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 2002, 120, 714–830. [Google Scholar] [CrossRef]
- Mitchell, P.; Hourihan, F.; Sandbach, J.; Wang, J.J. The relationship between glaucoma and myopia: The blue mountains eye study. Ophthalmology 1999, 106, 2010–2015. [Google Scholar] [CrossRef]
- Zhao, D.; Cho, J.; Kim, M.H.; Guallar, E. The association of blood pressure and primary open-angle glaucoma: A meta-analysis. Am. J. Ophthalmol. 2014, 158, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, W.; Huang, W.; Zhang, X. Diabetes mellitus as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. PLoS ONE 2014, 9, e102972. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Fu, J.; Hou, R.; Yang, D.; Fu, J.; Hou, R.; Jonas, J.B.; Wang, H.; Chen, W.; Li, Z.; et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3067–3073. [Google Scholar] [CrossRef] [Green Version]
- Doucette, L.P.; Rasnitsyn, A.; Seifi, M.; Walter, M.A. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv. Ophthalmol. 2015, 60, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Leske, M.C.; Wu, S.; Hennis, A.; Honkanen, R.; Nemesure, B. Risk factors for incident open-angle glaucoma: The barbados eye studies. Ophthalmology 2008, 115, 85–93. [Google Scholar] [CrossRef]
- Teikari, J.M. Genetic factors in open-angle (simple and capsular) glaucoma. A population-based twin study. Acta. Ophthalmol. (Copenh) 1987, 65, 715–720. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.M.; Salowe, R.J.; Fertig, R.; Salinas, J.; Pistilli, M.; Sankar, P.S.; Miller-Ellis, E.; Lehman, A.; Murphy, W.H.; Homsher, M.; et al. Family history in the primary open-angle African American glaucoma genetics study cohort. Am. J. Ophthalmol. 2018, 192, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Gottfredsdottir, M.S.; Sverrisson, T.; Musch, D.C.; Stefansson, E. Chronic open-angle glaucoma and associated ophthalmic findings in monozygotic twins and their spouses in Iceland. J. Glaucoma 1999, 8, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Allingham, R.R. Major review: Molecular genetics of primary open-angle glaucoma. Exp. Eye Res. 2017, 160, 62–84. [Google Scholar] [CrossRef]
- Janssen, S.F.; Gorgels Theo, G.M.F.; Ramdas, W.D.; Klaver, C.C.W.; van Duijn, C.M.; Jansonius, N.M.; Bergen, A.A.B. The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog. Retin. Eye Res. 2013, 37, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Allingham, R.R.; Liu, Y.; Rhee, D.J. The genetics of primary open-angle glaucoma: A review. Exp. Eye Res. 2009, 88, 837–844. [Google Scholar] [CrossRef]
- Youngblood, H.; Hauser, M.A.; Liu, Y. Update on the genetics of primary open-angle glaucoma. Exp. Eye Res. 2019, 188, 107795. [Google Scholar] [CrossRef]
- MacGregor, S.; Ong, J.-S.; An, J.; Han, X.; Zhou, T.; Siggs, O.M.; Law, M.H.; Souzeau, E.; Sharma, S.; Lynn, D.J.; et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nat. Genet. 2018, 50, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.W.; Gudiseva, H.V.; Chavali, V.R.M.; Trachtman, B.; Ramakrishnan, M.; Merritt, W.T., III; Pistilli, M.; Rossi, R.A.; Blachon, S.; Sankar, P.S.; et al. The MT-CO1 V83I polymorphism is a risk factor for primary open-angle glaucoma in African American men. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1751–1759. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886029/ (accessed on 13 July 2021). [CrossRef] [PubMed] [Green Version]
- Verkuil, L.; Danford, I.; Pistilli, M.; Collins, D.W.; Gudiseva, H.V.; Trachtman, B.T.; He, J.; Rathi, S.; Haider, N.; Ying, G.-S.; et al. SNP located in an AluJb repeat downstream of TMCO1, rs4657473, is protective for POAG in African Americans. Br. J. Ophthalmol. 2019, 103, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.J.; Tang, H.; Thornton, T.A.; Caan, B.; Haan, M.; Millen, A.E.; Thomas, F.; Risch, N. Genome-wide association and admixture analysis of glaucoma in the women’s health initiative. Hum. Mol. Genet. 2014, 23, 6634–6643. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hauser, M.A.; Akafo, S.K.; Qin, X.; Miura, S.; Gibson, J.R.; Wheeler, J.; Gaasterland, D.E.; Challa, P.; Herndon, L.W.; et al. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6248–6254. [Google Scholar] [CrossRef]
- Bonnemaijer, P.W.M.; Iglesias, A.I.; Nadkarni, G.N.; Sanyiwa, A.J.; Hassan, H.G.; Cook, C.; Simcoe, M.; Taylor, K.D.; Schurmann, C.; Belbin, G.M.; et al. Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum. Genet. 2018, 137, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Choquet, H.; Paylakhi, S.; Kneeland, S.C.; Thai, K.K.; Hoffmann, T.J.; Yin, J.; Kvale, M.N.; Banda, Y.; Tolman, N.G.; Williams, P.A.; et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat. Commun. 2018, 9, 2278. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.D.; Guo, X.; Zangwill, L.M.; Liebmann, J.M.; Girkin, C.A.; Feldman, R.M.; Dubiner, H.; Hai, Y.; Samuels, B.C.; Panarelli, J.F.; et al. Genetic architecture of primary open-angle glaucoma in individuals of African descent: The African descent and glaucoma evaluation study III. Ophthalmology 2019, 126, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudiseva, H.V.; Verma, S.S.; Chavali, V.R.M.; Salowe, R.J.; Lucas, A.; Collins, D.W.; Rathi, S.; He, J.; Lee, R.; Merriam, S.; et al. Genome wide-association study identifies novel loci in the primary open-angle African American glaucoma genetics (POAAGG) study. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chowdhury, R.; Laboissonniere, L.A.; Wester, A.K.; Muller, M.; Trimarchi, J.M. The trim family of genes and the retina: Expression and functional characterization. PLoS ONE 2018, 13, e0202867. [Google Scholar] [CrossRef] [Green Version]
- Charlson, E.S.; Sankar, P.S.; Miller-Ellis, E.; Regina, M.; Fertig, R.; Salinas, J.; Pistilli, M.; Salowe, R.J.; Rhodes, A.L.; Merritt, W.T.; et al. The primary open-angle African American glaucoma genetics study: Baseline demographics. Ophthalmology 2015, 122, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addis, V.; Oyeniran, E.; Daniel, E.; Salowe, R.; Zorger, R.; Lee, R.; Pistilli, M.; Maguire, M.; Cui, Q.; Miller-Ellis, E.; et al. Non-physician grader reliability in measuring morphological features of the optic nerve head in stereo digital images. Eye 2019, 33, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.; Maguire, M.G.; Glynn, R.; Rosner, B. Tutorial on biostatistics: Linear regression analysis of continuous correlated eye data. Ophthalmic Epidemiol. 2017, 24, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Ying, G.; Maguire, M.G.; Glynn, R.; Rosner, B. Tutorial on biostatistics: Statistical analysis for correlated binary eye data. Ophthalmic Epidemiol. 2018, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khetchoumian, K.; Teletin, M.; Mark, M.; Lerouge, T.; Cerviño, M.; Oulad-Abdelghani, M.; Chambon, P.; Losson, R. TIF1δ, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 2004, 279, 48329–48341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, Z.; Guo, X.; Li, F.; Wei, Q.; Chen, X.; Gong, D.; Xu, Y.; Chen, W.; Liu, Y.; et al. TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat. Commun. 2019, 10, 4273. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, N.; Pistilli, M.; Maguire, M.G.; Salowe, R.J.; Fertig, R.M.; Moore, T.; Gudiseva, H.V.; Chavali, V.R.M.; Collins, D.W.; Daniel, E.; et al. Primary open-angle African American glaucoma genetics (POAAGG) study: Gender and risk of POAG in African Americans. PLoS ONE 2019, 14, e0218804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Rauscher, F.G.; Choi, E.Y.; Wang, M.; Baniasadi, N.; Wirkner, K.; Kirsten, T.; Thiery, J.; Engel, C.; Loeffler, M.; et al. Sex-specific differences in circumpapillary retinal nerve fiber layer thickness. Ophthalmology 2020, 127, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Sehi, M.; Zhang, X.; Greenfield, D.S.; Chung, Y.; Wollstein, G.; Francis, B.A.; Schuman, J.S.; Varma, R.; Huang, D. Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am. J. Ophthalmol. 2013, 155, 73–82.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, A.; Medeiros, F.A.; Weinreb, R.N.; Jain, S.; He, F.; Sharpsten, L.; Khachatryan, N.; Hammel, N.; Liebmann, J.M.; Girkin, C.A.; et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology 2014, 121, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Tatham, A.J.; Weinreb, R.N.; Zangwill, L.M.; Liebmann, J.M.; Girkin, C.A.; Medeiros, F.A. The relationship between cup-to-disc ratio and estimated number of retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3205–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, J.M.; Gravel, S.; Byrnes, J.; Moreno-Estrada, A.; Musharoff, S.; Bryc, K.; Degenhardt, J.D.; Brisbin, A.; Sheth, V.; Chen, R.; et al. Population genetic inference from personal genome data: Impact of ancestry and admixture on human genomic variation. Am. J. Hum. Genet. 2012, 91, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Chavali, V.R.M.; Haider, N.; Rathi, S.; Vrathasha, V.; Alapati, T.; He, J.; Gill, K.; Nikonov, R.; Duong, T.T.; McDougald, D.S.; et al. Dual SMAD inhibition and wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
Phenotype | Wildtype TT | Variant TC | Mean Difference (95% CI) | p-Value | ||
---|---|---|---|---|---|---|
N Eyes | Mean (SD) | N Eyes | Mean (SD) | |||
MD (dB) | 3400 | −8.36 (9.02) | 457 | −8.64 (9.04) | 0.27 (−0.81 to 1.36) | 0.62 |
PSD (dB) | 3403 | 5.20 (3.47) | 457 | 5.27 (3.40) | −0.07 (−0.45 to 0.32) | 0.73 |
CCT | 3961 | 533.84 (40.07) | 578 | 529.61 (36.46) | 4.23 (−0.09 to 8.55) | 0.055 |
CDR | 3986 | 0.71 (0.17) | 569 | 0.72 (0.17) | −0.02 (−0.03 to 0.00) | 0.12 |
IOP | 4241 | 17.32 (6.00) | 617 | 17.67 (6.66) | −0.35 (−1.06 to 0.35) | 0.33 |
VA.CC | 3653 | 0.38 (0.84) | 522 | 0.46 (0.92) | −0.08 (−0.17 to 0.01) | 0.09 |
VA.SC | 2791 | 0.57 (0.98) | 374 | 0.69 (1.12) | −0.12 (−0.26 to 0.02) | 0.09 |
RNFL | 3401 | 73.40 (14.98) | 475 | 72.29 (15.50) | 1.12 (−0.73 to 2.96) | 0.24 |
Phenotype | Wildtype | Variant | p-Value |
---|---|---|---|
TT (N = 3227 Eyes) | TC (N = 462 Eyes) | ||
Disc Shape | 0.53 | ||
Round | 944 (48.4%) | 120 (46.0%) | |
Oval | 1008 (51.6%) | 141 (54.0%) | |
Disc Size | 0.61 | ||
Normal | 1934 (98.6%) | 259 (98.1%) | |
Abnormal | 27 (1.4%) | 5 (1.9%) | |
Shape of Cup | 0.34 | ||
Conical | 691 (37.0%) | 93 (37.8%) | |
Cylindrical | 934 (50.0%) | 112 (45.5%) | |
Bean | 243 (13.0%) | 41 (16.7%) | |
Cup Depth | 0.39 | ||
Shallow | 250 (13.3%) | 25 (10.2%) | |
Moderate | 1193 (63.3%) | 165 (67.1%) | |
Severe | 441 (23.4%) | 56 (22.8%) | |
Rim Plane Position Constant | 0.54 | ||
No | 288 (15.3%) | 42 (17.0%) | |
Yes | 1598 (84.7%) | 205 (83.0%) | |
Rim Depressed Inferior | 0.95 | ||
No | 1864 (98.8%) | 244 (98.8%) | |
Yes | 22 (1.2%) | 3 (1.2%) | |
Rim Depressed Superior | NA | ||
No | 1886 (100.0%) | 247 (100.0%) | |
Yes | 0 (0.0%) | 0 (0.0%) | |
Rim Depressed Nasal | 0.31 | ||
No | 1854 (98.3%) | 245 (99.2%) | |
Yes | 32 (1.7%) | 2 (0.8%) | |
Rim Depressed Temporal | 0.37 | ||
No | 1640 (87.0%) | 209 (84.6%) | |
Yes | 246 (13.0%) | 38 (15.4%) | |
Presence of PPA | NA | ||
No | 0 (0.0%) | 0 (0.0%) | |
Yes | 1946 (100.0%) | 262 (100.0%) | |
Borders of PPA | 0.68 | ||
Indistinct | 243 (12.5%) | 30 (11.5%) | |
Distinct | 1701 (87.5%) | 231 (88.5%) | |
Excavation | 0.37 | ||
No | 1415 (74.9%) | 194 (77.9%) | |
Yes | 473 (25.1%) | 55 (22.1%) | |
Heavy TM Pigmentation | 0.33 | ||
Indistinct | 1499 (77.1%) | 192 (73.8%) | |
Distinct | 446 (22.9%) | 68 (26.2%) | |
Disc Tilt | 0.08 | ||
No | 1841 (94.6%) | 237 (91.2%) | |
Yes | 106 (5.4%) | 23 (8.8%) | |
Disc Hemorrhage | 0.41 | ||
No | 1914 (98.2%) | 255 (97.3%) | |
Yes | 36 (1.8%) | 7 (2.7%) | |
Notching | 0.21 | ||
No | 1797 (93.9%) | 244 (96.1%) | |
Yes | 116 (6.1%) | 10 (3.9%) | |
Disc Pallor | 0.69 | ||
No | 1886 (96.7%) | 253 (96.2%) | |
Yes | 64 (3.3%) | 10 (3.8%) |
Gender | Phenotype | Wildtype TT | Variant TC | Mean Difference (95% CI) | p-Value | ||
---|---|---|---|---|---|---|---|
N Eyes | Mean (SD) | N Eyes | Mean (SD) | ||||
Males | MD (dB) | 1492 | −9.38 (9.89) | 158 | −10.83 (10.71) | 1.45 (−0.63 to 3.54) | 0.17 |
PSD (dB) | 1492 | 5.33 (3.51) | 158 | 5.60 (3.50) | −0.27 (−0.87 to 0.34) | 0.39 | |
CCT | 1680 | 534.78 (40.80) | 206 | 529.12 (34.40) | 5.66 (−1.27 to 12.59) | 0.11 | |
CDR | 1737 | 0.73 (0.17) | 210 | 0.77 (0.17) | −0.04 (−0.07 to −0.01) | 0.02 | |
IOP | 1824 | 17.27 (6.17) | 223 | 17.97 (7.82) | −0.70 (−2.07 to 0.67) | 0.32 | |
VA.CC | 1548 | 0.43 (0.93) | 183 | 0.53 (0.94) | −0.09 (−0.25 to 0.06) | 0.23 | |
VA.SC | 1204 | 0.63 (1.09) | 147 | 0.73 (1.10) | −0.10 (−0.32 to 0.12) | 0.38 | |
RNFL | 1438 | 71.47 (14.84) | 160 | 67.74 (14.88) | 3.73 (0.85 to 6.61) | 0.01 | |
Females | MD (dB) | 1908 | −7.57 (8.19) | 299 | −7.48 (7.78) | −0.09 (−1.29 to 1.11) | 0.88 |
PSD (dB) | 1911 | 5.10 (3.44) | 299 | 5.09 (3.34) | 0.00 (−0.49 to 0.50) | 0.99 | |
CCT | 2281 | 533.15 (39.52) | 372 | 529.89 (37.60) | 3.27 (−2.25 to 8.78) | 0.25 | |
CDR | 2249 | 0.69 (0.17) | 359 | 0.70 (0.16) | −0.01 (−0.03 to 0.02) | 0.56 | |
IOP | 2417 | 17.35 (5.87) | 394 | 17.50 (5.91) | −0.15 (−0.94 to 0.64) | 0.72 | |
VA.CC | 2105 | 0.35 (0.76) | 339 | 0.43 (0.91) | −0.08 (−0.19 to 0.03) | 0.16 | |
VA.SC | 1587 | 0.52 (0.88) | 227 | 0.66 (1.14) | −0.14 (−0.31 to 0.04) | 0.12 | |
RNFL | 1963 | 74.82 (14.92) | 315 | 74.59 (15.33) | 0.22 (−2.07 to 2.52) | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.D.; Gudiseva, H.V.; McGeehan, B.; Daniel, E.; Ying, G.S.; Chavali, V.R.M.; O’Brien, J.M. Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans. Genes 2021, 12, 1420. https://doi.org/10.3390/genes12091420
Kim CD, Gudiseva HV, McGeehan B, Daniel E, Ying GS, Chavali VRM, O’Brien JM. Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans. Genes. 2021; 12(9):1420. https://doi.org/10.3390/genes12091420
Chicago/Turabian StyleKim, Claire D., Harini V. Gudiseva, Brendan McGeehan, Ebenezer Daniel, Gui Shuang Ying, Venkata R. M. Chavali, and Joan M. O’Brien. 2021. "Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans" Genes 12, no. 9: 1420. https://doi.org/10.3390/genes12091420
APA StyleKim, C. D., Gudiseva, H. V., McGeehan, B., Daniel, E., Ying, G. S., Chavali, V. R. M., & O’Brien, J. M. (2021). Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans. Genes, 12(9), 1420. https://doi.org/10.3390/genes12091420