Shared Genetic Etiology between Alzheimer’s Disease and Blood Levels of Specific Cytokines and Growth Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. GWAS Summary Statistics for PRS-Based Analyses
2.2. PRS-Based Analyses
2.3. SNP Effect Concordance Analyses
3. Results
3.1. PRS-Based Analyses
3.2. SECA Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Patterson, C. World Alzheimer Report 2018: The State of the Art of Dementia Research: New Frontiers; Alzheimer’s Disease International (ADI): London, UK, 2018. [Google Scholar]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Bekris, L.M.; Yu, C.E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2010, 23, 213–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hagg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (N. Y.) 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 2017, 23, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Remarque, E.J.; Bollen, E.L.; Weverling-Rijnsburger, A.W.; Laterveer, J.C.; Blauw, G.J.; Westendorp, R.G. Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp. Gerontol. 2001, 36, 171–176. [Google Scholar] [CrossRef]
- Yokoyama, J.S.; Wang, Y.; Schork, A.J.; Thompson, W.K.; Karch, C.M.; Cruchaga, C.; McEvoy, L.K.; Witoelar, A.; Chen, C.H.; Holland, D.; et al. Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurol. 2016, 73, 691–697. [Google Scholar] [CrossRef]
- Su, F.; Bai, F.; Zhang, Z. Inflammatory Cytokines and Alzheimer’s Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci. Bull. 2016, 32, 469–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 2018, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Ahola-Olli, A.V.; Wurtz, P.; Havulinna, A.S.; Aalto, K.; Pitkanen, N.; Lehtimaki, T.; Kahonen, M.; Lyytikainen, L.P.; Raitoharju, E.; Seppala, I.; et al. Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. Am. J. Hum. Genet. 2017, 100, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Euesden, J.; Lewis, C.M.; O’Reilly, P.F. PRSice: Polygenic Risk Score software. Bioinformatics 2015, 31, 1466–1468. [Google Scholar] [CrossRef] [Green Version]
- Bralten, J.; van Hulzen, K.J.; Martens, M.B.; Galesloot, T.E.; Arias Vasquez, A.; Kiemeney, L.A.; Buitelaar, J.K.; Muntjewerff, J.W.; Franke, B.; Poelmans, G. Autism spectrum disorders and autistic traits share genetics and biology. Mol. Psychiatry 2018, 23, 1205–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xicoy, H.; Klemann, C.J.; De Witte, W.; Martens, M.B.; Martens, G.J.; Poelmans, G. Shared genetic etiology between Parkinson’s disease and blood levels of specific lipids. NPJ Parkinsons Dis. 2021, 7, 23. [Google Scholar] [CrossRef]
- Nyholt, D.R. SECA: SNP effect concordance analysis using genome-wide association summary results. Bioinformatics 2014, 30, 2086–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopa, E.G.; Gonzalez, A.M.; Chorsky, R.; Corona, R.J.; Alvarez, J.; Bird, E.D.; Baird, A. Basic fibroblast growth factor in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 1990, 171, 690–696. [Google Scholar] [CrossRef]
- Kiyota, T.; Ingraham, K.L.; Jacobsen, M.T.; Xiong, H.; Ikezu, T. FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc. Natl. Acad. Sci. USA 2011, 108, E1339–E1348. [Google Scholar] [CrossRef] [Green Version]
- Barber, R.C.; Edwards, M.I.; Xiao, G.; Huebinger, R.M.; Diaz-Arrastia, R.; Wilhelmsen, K.C.; Hall, J.R.; O’Bryant, S.E. Serum granulocyte colony-stimulating factor and Alzheimer’s disease. Dement. Geriatr. Cogn. Dis. Extra 2012, 2, 353–360. [Google Scholar] [CrossRef]
- Prakash, A.; Medhi, B.; Chopra, K. Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-beta induced experimental model of Alzheimer’s disease. Pharmacol. Biochem. Behav. 2013, 110, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hilal, S.; Chai, Y.L.; Ikram, M.K.; Venketasubramanian, N.; Chen, C.P.; Lai, M.K.P. Serum Hepatocyte Growth Factor Is Associated with Small Vessel Disease in Alzheimer’s Dementia. Front. Aging Neurosci. 2018, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Fenton, H.; Finch, P.W.; Rubin, J.S.; Rosenberg, J.M.; Taylor, W.G.; Kuo-Leblanc, V.; Rodriguez-Wolf, M.; Baird, A.; Schipper, H.M.; Stopa, E.G. Hepatocyte growth factor (HGF/SF) in Alzheimer’s disease. Brain Res. 1998, 779, 262–270. [Google Scholar] [CrossRef]
- Laske, C.; Sopova, K.; Hoffmann, N.; Stransky, E.; Hagen, K.; Fallgatter, A.J.; Stellos, K.; Leyhe, T. Stem cell factor plasma levels are decreased in Alzheimer’s disease patients with fast cognitive decline after one-year follow-up period: The Pythia-study. J. Alzheimers Dis. 2011, 26, 39–45. [Google Scholar] [CrossRef]
- Guillot-Sestier, M.V.; Doty, K.R.; Gate, D.; Rodriguez, J., Jr.; Leung, B.P.; Rezai-Zadeh, K.; Town, T. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 2015, 85, 534–548. [Google Scholar] [CrossRef] [Green Version]
- Franco-Bocanegra, D.K.; George, B.; Lau, L.C.; Holmes, C.; Nicoll, J.A.R.; Boche, D. Microglial motility in Alzheimer’s disease and after Abeta42 immunotherapy: A human post-mortem study. Acta Neuropathol. Commun. 2019, 7, 174. [Google Scholar] [CrossRef]
- Wood, L.B.; Winslow, A.R.; Proctor, E.A.; McGuone, D.; Mordes, D.A.; Frosch, M.P.; Hyman, B.T.; Lauffenburger, D.A.; Haigis, K.M. Identification of neurotoxic cytokines by profiling Alzheimer’s disease tissues and neuron culture viability screening. Sci. Rep. 2015, 5, 16622. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Allard, J.S.; Zhang, Y.; Perez, E.; Spangler, E.L.; Becker, K.G.; Rapp, P.R. Age-related brain expression and regulation of the chemokine CCL4/MIP-1beta in APP/PS1 double-transgenic mice. J. Neuropathol. Exp. Neurol. 2014, 73, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Raj, D.; Saiepour, N.; Van Dam, D.; Brouwer, N.; Holtman, I.R.; Eggen, B.J.L.; Moller, T.; Tamm, J.A.; Abdourahman, A.; et al. Immune hyperreactivity of Abeta plaque-associated microglia in Alzheimer’s disease. Neurobiol. Aging 2017, 55, 115–122. [Google Scholar] [CrossRef]
- Xu, C.J.; Wang, J.L.; Jin, W.L. The Emerging Therapeutic Role of NGF in Alzheimer’s Disease. Neurochem. Res. 2016, 41, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Cuello, A.C.; Pentz, R.; Hall, H. The Brain NGF Metabolic Pathway in Health and in Alzheimer’s Pathology. Front. Neurosci. 2019, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Eyjolfsdottir, H.; Eriksdotter, M.; Linderoth, B.; Lind, G.; Juliusson, B.; Kusk, P.; Almkvist, O.; Andreasen, N.; Blennow, K.; Ferreira, D.; et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: Application of a second-generation encapsulated cell biodelivery device. Alzheimers Res. Ther. 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Azizi, G.; Khannazer, N.; Mirshafiey, A. The Potential Role of Chemokines in Alzheimer’s Disease Pathogenesis. Am. J. Alzheimers Dis. Other Demen. 2014, 29, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, J.; Zhang, Y.; Zhang, Y.; Cai, F.; Wang, L.; Song, W. Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease. Alzheimers Res. Ther. 2019, 11, 54. [Google Scholar] [CrossRef]
- Tarantino, G.; Citro, V.; Balsano, C.; Capone, D. Could SCGF-Beta Levels Be Associated with Inflammation Markers and Insulin Resistance in Male Patients Suffering from Obesity-Related NAFLD? Diagnostics (Basel) 2020, 10, 395. [Google Scholar] [CrossRef]
- Tripathy, D.; Thirumangalakudi, L.; Grammas, P. Expression of macrophage inflammatory protein 1-alpha is elevated in Alzheimer’s vessels and is regulated by oxidative stress. J. Alzheimers Dis. 2007, 11, 447–455. [Google Scholar] [CrossRef]
- Vacinova, G.; Vejrazkova, D.; Rusina, R.; Holmerova, I.; Vankova, H.; Jarolimova, E.; Vcelak, J.; Bendlova, B.; Vankova, M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer’s disease. Neural Regen. Res. 2021, 16, 796–800. [Google Scholar] [CrossRef]
- Tripathy, D.; Thirumangalakudi, L.; Grammas, P. RANTES upregulation in the Alzheimer’s disease brain: A possible neuroprotective role. Neurobiol. Aging 2010, 31, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Tian, L.; Liu, L.; Feng, Y.; Dong, Y.B.; Li, B.; Shang, D.S.; Fang, W.G.; Cao, Y.P.; Chen, Y.H. CXCL1 contributes to beta-amyloid-induced transendothelial migration of monocytes in Alzheimer’s disease. PLoS ONE 2013, 8, e72744. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhao, Y.F.; Zhu, S.W.; Huang, W.J.; Luo, Y.; Chen, Q.Y.; Ge, L.J.; Li, R.S.; Wang, J.F.; Sun, M.; et al. CXCL1 Triggers Caspase-3 Dependent Tau Cleavage in Long-Term Neuronal Cultures and in the Hippocampus of Aged Mice: Implications in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 48, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Lepennetier, G.; Hracsko, Z.; Unger, M.; Van Griensven, M.; Grummel, V.; Krumbholz, M.; Berthele, A.; Hemmer, B.; Kowarik, M.C. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflammation 2019, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Uberti, D.; Cantarella, G.; Facchetti, F.; Cafici, A.; Grasso, G.; Bernardini, R.; Memo, M. TRAIL is expressed in the brain cells of Alzheimer’s disease patients. Neuroreport 2004, 15, 579–581. [Google Scholar] [CrossRef]
- Cantarella, G.; Di Benedetto, G.; Puzzo, D.; Privitera, L.; Loreto, C.; Saccone, S.; Giunta, S.; Palmeri, A.; Bernardini, R. Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain 2015, 138, 203–216. [Google Scholar] [CrossRef]
- Genc, S.; Egrilmez, M.Y.; Yaka, E.; Cavdar, Z.; Iyilikci, L.; Yener, G.; Genc, K. TNF-related apoptosis-inducing ligand level in Alzheimer’s disease. Neurol. Sci. 2009, 30, 263–267. [Google Scholar] [CrossRef]
- Hesse, R.; Wahler, A.; Gummert, P.; Kirschmer, S.; Otto, M.; Tumani, H.; Lewerenz, J.; Schnack, C.; von Arnim, C.A. Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1beta. BMC Neurol. 2016, 16, 185. [Google Scholar] [CrossRef] [Green Version]
- Galimberti, D.; Schoonenboom, N.; Scheltens, P.; Fenoglio, C.; Bouwman, F.; Venturelli, E.; Guidi, I.; Blankenstein, M.A.; Bresolin, N.; Scarpini, E. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch. Neurol. 2006, 63, 538–543. [Google Scholar] [CrossRef]
- Thirumangalakudi, L.; Yin, L.; Rao, H.V.; Grammas, P. IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J. Alzheimers Dis. 2007, 11, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ashutosh; Kou, W.; Cotter, R.; Borgmann, K.; Wu, L.; Persidsky, R.; Sakhuja, N.; Ghorpade, A. CXCL8 protects human neurons from amyloid-beta-induced neurotoxicity: Relevance to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 2011, 412, 565–571. [Google Scholar] [CrossRef] [Green Version]
Name | Description | Type | N GWAS |
---|---|---|---|
CCL11 | Eotaxin | Cytokine | 8153 |
CCL2 (MCP1) | Monocyte chemotactic protein-1 | Cytokine | 8293 |
CCL27 (CTACK) | Cutaneous T-cell attracting | Cytokine | 3631 |
CCL3 (MIP1α) | Macrophage inflammatory protein-1α | Cytokine | 3522 |
CCL4 (MIP1β) | Macrophage inflammatory protein-1β | Cytokine | 8243 |
CCL5 (RANTES) | Regulated upon activation, normal T cell expressed and secreted | Cytokine | 3421 |
CCL7 (MCP3) | Monocyte specific chemokine 3 | Cytokine | 843 |
CXCL1 (GROa) | Growth-regulated oncogene-α | Cytokine | 3505 |
CXCL10 (IP10) | Interferon γ-induced protein 10 | Cytokine | 3685 |
CXCL12 (SDF1a) | Stromal cell-derived factor-1 α | Cytokine | 5998 |
CXCL9 (MIG) | Monokine induced by interferon-γ | Cytokine | 3685 |
FGF2 (FGFBasic) | Basic fibroblast growth factor | Growth factor | 7565 |
GCSF | Granulocyte colony-stimulating factor | Growth factor | 7904 |
HGF | Hepatocyte growth factor | Growth factor | 8292 |
IFNγ | Interferon-γ | Cytokine | 7701 |
IL10 | Interleukin-10 | Cytokine | 7681 |
IL12p70 | Interleukin-12p70 | Cytokine | 8270 |
IL13 | Interleukin-13 | Cytokine | 3557 |
IL16 | Interleukin-16 | Cytokine | 3483 |
IL17 | Interleukin-17 | Cytokine | 7760 |
IL18 | Interleukin-18 | Cytokine | 3636 |
IL1b | Interleukin-1-β | Cytokine | 3309 |
IL1ra | Interleukin-1 receptor antagonist | Cytokine | 3638 |
IL2 | Interleukin-2 | Cytokine | 3475 |
IL2ra | Interleukin-2 receptor, α subunit | Cytokine | 3677 |
IL4 | Interleukin-4 | Cytokine | 8124 |
IL5 | Interleukin-5 | Cytokine | 3364 |
IL6 | Interleukin-6 | Cytokine | 8189 |
IL7 | Interleukin-7 | Cytokine | 3409 |
IL8 (CXCL8) | Interleukin-8 | Cytokine | 3526 |
IL9 | Interleukin-9 | Cytokine | 3634 |
MCSF | Macrophage colony-stimulating factor | Growth factor | 840 |
MIF | Macrophage migration inhibitory factor (glycosylation-inhibiting factor) | Growth factor | 3494 |
PDGFbb | Platelet-derived growth factor BB | Growth factor | 8293 |
SCF | Stem cell factor | Growth factor | 8290 |
SCGFβ | Stem cell growth factor β | Growth factor | 3682 |
TNFα | Tumor necrosis factor-α | Growth factor | 3454 |
TNFβ | Tumor necrosis factor-β | Growth factor | 1559 |
TRAIL | TNF-related apoptosis-inducing ligand | Cytokine | 8186 |
VEGF | Vascular endothelial growth factor | Growth factor | 7118 |
βNGF | β nerve growth factor | Growth factor | 3531 |
Immune Marker | Best PT | N SNPs | Bonferroni p-Value | Variance Explained R2 | Concordance with AD |
---|---|---|---|---|---|
CCL4 (MIP1β) | 0.001 | 2001 | 3.51 × 10−5 | 0.003227 | + |
FGF2 (FGFBasic) | 0.5 | 497,296 | 7.18 × 10−7 | 0.004509 | + |
GCSF | 0.2 | 236,031 | 3.45 × 10−3 | 0.002255 | + |
HGF | 0.5 | 498,823 | 4.25 × 10−4 | 0.002631 | + |
IL10 | 0.5 | 497,485 | 1.38 × 10−7 | 0.004857 | + |
IL12p70 | 0.5 | 498,327 | 7.70 × 10−3 | 0.001971 | + |
SCF | 0.5 | 498,841 | 3.14 × 10−3 | 0.002171 | + |
bNGF | 0.001 | 1894 | 4.03 × 10−3 | 0.004956 | - |
CCL3 (MIP1α) | 0.05 | 65,371 | 2.25 × 10−2 | 0.004048 | - |
CCL5 (RANTES) | 0.3 | 310,864 | 2.45 × 10−8 | 0.011848 | - |
CXCL1 (GROα) | 0.2 | 221,410 | 1.54 × 10−13 | 0.018177 | - |
IL8 | 0.2 | 220,931 | 9.84 × 10−5 | 0.006968 | - |
MIF | 0.2 | 221,727 | 6.80 × 10−5 | 0.007234 | - |
SCGFβ | 0.001 | 1927 | 1.54 × 10−4 | 0.006441 | - |
TRAIL | 0.3 | 332,200 | 3.18 × 10−5 | 0.003273 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Linden, R.J.; De Witte, W.; Poelmans, G. Shared Genetic Etiology between Alzheimer’s Disease and Blood Levels of Specific Cytokines and Growth Factors. Genes 2021, 12, 865. https://doi.org/10.3390/genes12060865
van der Linden RJ, De Witte W, Poelmans G. Shared Genetic Etiology between Alzheimer’s Disease and Blood Levels of Specific Cytokines and Growth Factors. Genes. 2021; 12(6):865. https://doi.org/10.3390/genes12060865
Chicago/Turabian Stylevan der Linden, Robert J., Ward De Witte, and Geert Poelmans. 2021. "Shared Genetic Etiology between Alzheimer’s Disease and Blood Levels of Specific Cytokines and Growth Factors" Genes 12, no. 6: 865. https://doi.org/10.3390/genes12060865
APA Stylevan der Linden, R. J., De Witte, W., & Poelmans, G. (2021). Shared Genetic Etiology between Alzheimer’s Disease and Blood Levels of Specific Cytokines and Growth Factors. Genes, 12(6), 865. https://doi.org/10.3390/genes12060865