ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction
Abstract
:1. Introduction
1.1. The Conformation Capture Assays
1.2. A Description of the Hi-C Experiment
1.3. The Genome Reconstruction Problem
1.4. Motivating ChromeBat
2. Materials and Methods
2.1. Loss Function
2.2. Bat Algorithm for the 3D-GRP
2.3. Preprocessing
2.4. Hyperparameter Selection
2.5. Evaluation
2.6. Datasets
3. Results
3.1. Comparison with Metaheuristic Methods
3.2. Comparison with Existing 3D-GRP Methods in Literature
3.3. Robustness
4. Discussion
Computation Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
bp | Base pairs; |
3D | Three Dimensional; |
NGS | Next Generation Sequencing; |
TAD | Topologically Associating Domain; |
3D-GRP | Three Dimensional Genome Reconstruction Problem; |
MDS | Multidimensional Scaling; |
LAD | Lamina-Associated Domain; |
dSCC | Distance Spearman Correlation Coefficient; |
SA | Simulated Annealing; |
PSO | Particle Swarm Optimization. |
References
- Kleinjan, D.A.; van Heyningen, V. Long-range control of gene expression: Emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 2005, 76, 8–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spector, D.L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 2003, 72, 573–608. [Google Scholar] [CrossRef] [PubMed]
- De Wit, E.; De Laat, W. A decade of 3C technologies: Insights into nuclear organization. Genes Dev. 2012, 26, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Kalhor, R.; Tjong, H.; Jayathilaka, N.; Alber, F.; Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 2012, 30, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman-Aiden, E.; Van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sati, S.; Cavalli, G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 2017, 126, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Segal, M.R.; Bengtsson, H.L. Reconstruction of 3D genome architecture via a two-stage algorithm. BMC Bioinform. 2015, 16, 373. [Google Scholar] [CrossRef] [Green Version]
- Oluwadare, O.; Highsmith, M.; Cheng, J. An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol. Proced. Online 2019, 21, 7. [Google Scholar] [CrossRef]
- MacKay, K.; Kusalik, A. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Briefings Funct. Genom. 2020, 19, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.; Rousseau, M.; Shenker, S.; Ferraiuolo, M.A.; Hayashizaki, Y.; Blanchette, M.; Dostie, J. Chromatin conformation signatures of cellular differentiation. Genome Biol. 2009, 10, R37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, G.; Toh, K.C.; Sung, W.K. 3D chromosome modeling with semi-definite programming and Hi-C data. J. Comput. Biol. 2013, 20, 831–846. [Google Scholar] [CrossRef]
- Shavit, Y.; Hamey, F.K.; Lio, P. FisHiCal: An R package for iterative FISH-based calibration of Hi-C data. Bioinformatics 2014, 30, 3120–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, J. Sequential minimax search for a maximum. Proc. Am. Math. Soc. 1953, 4, 502–506. [Google Scholar] [CrossRef]
- Borg, I.; Groenen, P.J. Modern Multidimensional Scaling: Theory and Applications; Springer Science & Business Media: Berlin, Germany, 2005. [Google Scholar]
- Rieber, L.; Mahony, S. miniMDS: 3D structural inference from high-resolution Hi-C data. Bioinformatics 2017, 33, i261–i266. [Google Scholar] [CrossRef] [Green Version]
- Oluwadare, O.; Zhang, Y.; Cheng, J. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data. BMC Genom. 2018, 19, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, C.; Zhang, Y.; Ouyang, Z. HSA: Integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure. Genome Biol. 2016, 17, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, F.Z.; Liu, Z.E.; Li, X.Y.; Bu, L.M.; Bu, H.X.; Liu, H.; Zhang, C.M. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci. BMC Bioinform. 2020, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Trieu, T.; Cheng, J. Chromosome3D: Reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing. BMC Genom. 2016, 17, 886. [Google Scholar] [CrossRef] [Green Version]
- Trieu, T.; Cheng, J. 3D genome structure modeling by Lorentzian objective function. Nucleic Acids Res. 2017, 45, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Trieu, T.; Cheng, J. MOGEN: A tool for reconstructing 3D models of genomes from chromosomal conformation capturing data. Bioinformatics 2016, 32, 1286–1292. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; He, X.; Niu, J.; Zhou, B.; Zhu, G.; Ma, T.; Song, J.; Gao, J.; Zhang, M.Q.; Zeng, J. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. Nat. Commun. 2019, 10, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsen, J.; Sekelja, M.; Oldenburg, A.R.; Barateau, A.; Briand, N.; Delbarre, E.; Shah, A.; Sørensen, A.L.; Vigouroux, C.; Buendia, B.; et al. Chrom3D: Three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol. 2017, 18, 21. [Google Scholar] [CrossRef]
- Rousseau, M.; Fraser, J.; Ferraiuolo, M.A.; Dostie, J.; Blanchette, M. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinform. 2011, 12, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varoquaux, N.; Ay, F.; Noble, W.S.; Vert, J.P. A statistical approach for inferring the 3D structure of the genome. Bioinformatics 2014, 30, i26–i33. [Google Scholar] [CrossRef]
- Trussart, M.; Serra, F.; Baù, D.; Junier, I.; Serrano, L.; Marti-Renom, M.A. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Res. 2015, 43, 3465–3477. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Metaheuristic algorithms in modeling and optimization. In Elsevier Metaheuristic Applications in Structures and Infrastructures; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–24. [Google Scholar]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Elsevier Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–231. [Google Scholar]
- Salimi, H. Stochastic fractal search: A powerful metaheuristic algorithm. Knowl. Based Syst. 2015, 75, 1–18. [Google Scholar] [CrossRef]
- Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [Google Scholar] [CrossRef]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin, Germany, 2010; pp. 65–74. [Google Scholar]
- Baù, D.; Sanyal, A.; Lajoie, B.R.; Capriotti, E.; Byron, M.; Lawrence, J.B.; Dekker, J.; Marti-Renom, M.A. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 2011, 18, 107. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, J.; Ahmed, S.; Xu, L.; Oluwadare, O.; Chen, H.; Hensley, N.; Trieu, T.; Cao, R.; Cheng, J. Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data. BMC Bioinform. 2015, 16, 338. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Ahmad, A.; Abdel-Rahman, E. A Metaheuristic Bat-Inspired Algorithm for Full Body Human Pose Estimation. In Proceedings of the Ninth Conference on Computer and Robot Vision in Toronto, Toronto, ON, Canada, 28 May 2012; pp. 369–375. [Google Scholar] [CrossRef]
- Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oluwadare, O.; Highsmith, M.; Turner, D.; Lieberman-Aiden, E.; Cheng, J. GSDB: A database of 3D chromosome and genome structures reconstructed from Hi-C data. BMC Mol. Cell Biol. 2020, 21, 60. [Google Scholar] [CrossRef]
- Knight, P.A.; Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 2013, 33, 1029–1047. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Andronescu, M.; Schutz, K.; McIlwain, S.; Kim, Y.J.; Lee, C.; Shendure, J.; Fields, S.; Blau, C.A.; Noble, W.S. A three-dimensional model of the yeast genome. Nature 2010, 465, 363–367. [Google Scholar] [CrossRef]
- Hua, N.; Tjong, H.; Shin, H.; Gong, K.; Zhou, X.J.; Alber, F. PGS: A dynamic and automated population-based genome structure software. bioRxiv 2017. [Google Scholar] [CrossRef]
- Szalaj, P.; Michalski, P.J.; Wróblewski, P.; Tang, Z.; Kadlof, M.; Mazzocco, G.; Ruan, Y.; Plewczynski, D. 3D-GNOME: An integrated web service for structural modeling of the 3D genome. Nucleic Acids Res. 2016, 44, W288–W293. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, L. The PyMOL Molecular Graphics System; Version 2010; Schrödinger, Inc.: New York, NY, USA, 2010. [Google Scholar]
Method | LorDG | 3Dmax | ShNeigh | HSA | Chromosome3D | ChromeBat |
---|---|---|---|---|---|---|
LorDG | n/a | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
3Dmax | 0.00000 | n/a | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
ShNeigh | 0.00000 | 0.00000 | n/a | 0.00000 | 0.00000 | |
HSA | 0.00000 | 0.00000 | n/a | 0.00000 | 0.00000 | |
Chromosome3D | 0.00000 | 0.00000 | 0.00000 | 0.00000 | n/a | 0.00000 |
ChromeBat | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | n/a |
Method | Litigator | d(L1,L3) < d(L1,L2)? | d(L2,L3) < d(L2,L4)? |
---|---|---|---|
ChromeBat | HindIII | Yes | Yes |
Ncol | Yes | Yes | |
LorDG | HindIII | No | Yes |
Ncol | No | Yes | |
HSA | HindIII | No | Yes |
Ncol | No | Yes | |
3Dmax | HindIII | Yes | Yes |
Ncol | Yes | Yes | |
Chromosome3D | HindIII | Yes | Yes |
Ncol | No | Yes | |
ShNeigh | HindIII | No | Yes |
Ncol | No | Yes |
Chromosome | U | p |
---|---|---|
1 | 0 | |
2 | 0 | |
3 | 199 | |
4 | 0 | |
5 | 376 | |
6 | 412 | |
7 | 492 | |
8 | 138 | |
9 | 105 | |
10 | 110 | |
11 | 91 | |
12 | 35 | |
13 | 70 | |
14 | 37 | |
15 | 36 | |
16 | 0 | |
17 | 86 | |
18 | 98 | |
19 | 24 | |
20 | 43 | |
21 | 160 | |
22 | 251 | |
23 | 156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, B.; Oluwadare, O.; Brown, P. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction. Genes 2021, 12, 1757. https://doi.org/10.3390/genes12111757
Collins B, Oluwadare O, Brown P. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction. Genes. 2021; 12(11):1757. https://doi.org/10.3390/genes12111757
Chicago/Turabian StyleCollins, Brandon, Oluwatosin Oluwadare, and Philip Brown. 2021. "ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction" Genes 12, no. 11: 1757. https://doi.org/10.3390/genes12111757
APA StyleCollins, B., Oluwadare, O., & Brown, P. (2021). ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction. Genes, 12(11), 1757. https://doi.org/10.3390/genes12111757